Limite d'une fonction en un réel

A) Limite finie

Soit f la fonction définie pour tout réel non-nul par :

$$f(x) = 7x^2 + 4x + 2$$

- 1. Limite en 2:
 - a. Recopier puis compléter le tableau de valeur ci-dessous :

x	1,9	1,99	2,01	2,1
f(x)				

- b. De quelle valeur se rapproche f(x) pour x qui se rapproche de 2.
- c. Recopier et compléter :

$$\lim_{x \to 2} f(x) = \dots$$

2. Déterminer la limite de f en -4.

B) Limite infinie

Soit g la fonction définie pour tout réel $x \neq 2$ par :

$$g(x) = \frac{1}{x - 2}$$

- 1. Déterminer les variations de g sur $\mathbb{R} \{2\}$.
- 2. Déterminer le signe de la fonction g.
- 3. Limite à gauche en 2 :
 - a. Recopier puis compléter le tableau de valeur ci-dessous :

	x	1	1,5	1,9	1,99
ĺ	g(x)				

- b. Déterminer une valeur de $x \in [1; 2[$ pour laquelle g(x) < -10.000.
- c. Recopier et compléter :

$$\lim_{x \to 2^{-}} g(x) = \dots$$

- 4. En déduire une asymptote à la courbe de la fonction g.
- 5. Déterminer la limite de g à droite en 2.

C) Limites de fonctions usuelles en 0

A l'aide de votre calculatrice, déterminer les limites en 0 des fonctions usuelles suivantes :

- 1. $x \longmapsto \frac{1}{x}$;
- 2. $x \longmapsto \sqrt{x}$;
- 3. $x \longmapsto \frac{1}{x^n}$ avec $n \in \mathbb{N}^*$.