L'essentiel du chapitre 2

Mesure principale:

La mesure principale de l'angle orienté est celle appartenant à l'intervalle $I =]-\pi;\pi].$

Relation de Chasles:

Pour tous vecteurs non nuls \vec{u} , \vec{v} et \vec{w} : $(\vec{u}, \vec{v}) + (\vec{v}, \vec{w}) = (\vec{u}, \vec{w}) \pmod{2\pi}$

Angles orientés

Pour tous vecteurs non nuls \vec{u} et \vec{v} :

$$\begin{split} (\vec{v}, \vec{u}) &= -(\vec{u}, \vec{v}) \, (mod \, 2\pi) \\ (\vec{u}, -\vec{v}) &= (\vec{u}, \vec{v}) + \pi \, (mod \, 2\pi) \\ (-\vec{u}, \vec{v}) &= (\vec{u}, \vec{v}) + \pi \, (mod \, 2\pi) \\ (-\vec{u}, -\vec{v}) &= (\vec{u}, \vec{v}) \, (mod \, 2\pi) \end{split}$$

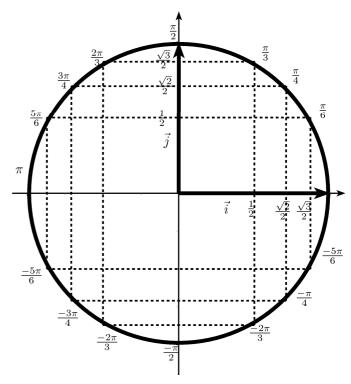
Repérage polaire

Dans un repère cartésien orthonormée $(O; \overrightarrow{i}, \overrightarrow{j})$ associé au repère polaire $(O; \overrightarrow{i})$.

- Si M distinct de O a pour coordonnées cartésiennes (x;y) alors il a pour coordonnées polaires $(r;\theta)$ avec : $r = \sqrt{x^2 + y^2} \; ; \; cos(\theta) = \frac{x}{r} \; \text{et} \; sin(\theta) = \frac{y}{r}$
- Si M distinct de O a pour coordonnées polaires $(r; \theta)$ alors il a pour coordonnées cartésiennes (x; y) avec : $x = rcos(\theta)$ et $y = rsin(\theta)$

Relation entre cosinus et sinus :

Pour tout réel x, $(cos(x))^2 + (sin(x))^2 = 1$ cos(-x) = cos(x) et sin(-x) = sin(x) $cos(\pi - x) = -cos(x)$ et $sin(\pi - x) = sin(x)$ $cos(\pi + x) = -cos(x)$ et $sin(\pi + x) = -sin(x)$ $cos(\frac{\pi}{2} - x) = sin(x)$ et $sin(\frac{\pi}{2} - x) = cos(x)$



Équations $\cos x = \cos \theta$ **sur** \mathbb{R}

$$\begin{cases} x = \theta + 2k\pi & (k \in \mathbb{Z}) \\ x = -\theta + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

Équations $\sin x = \sin \theta$ **sur** \mathbb{R}

$$\left\{ \begin{array}{lcl} x & = & \theta & + & 2k\pi & (k \in \mathbb{Z}) \\ x & = & \pi - \theta & + & 2k'\pi & (k' \in \mathbb{Z}) \end{array} \right.$$