Chapitre 7: Applications de la dérivation

1 Signe de la dérivée et variations

a) Du sens de variation au signe de la dérivée

Théorème:

f est une fonction dérivable sur un intervalle I:

- si f est croissante sur I alors pour tout réel x de I, $f'(x) \ge 0$.
- si f est décroissante sur I alors pour tout réel x de I, $f'(x) \leq 0$.
- si f est constante sur I alors pour tout réel x de I, f'(x) = 0.

b) Du signe de la dérivée au sens de variation

Théorème: (admis)

f est une fonction dérivable sur un intervalle I:

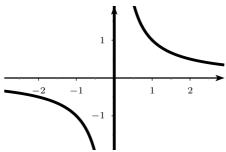
- si pour tout réel x de I, $f'(x) \ge 0$ alors f est croissante sur I.
- si pour tout réel x de I, $f'(x) \le 0$ alors f est décroissante sur I.
- si pour tout réel x de I, f'(x) = 0 alors f est constante sur I.

Remarques:

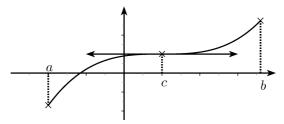
• L'énoncé de ce théorème n'est plus vrai si l'on remplace « intervalle » par « réunion d'intervalles ». En effet, la fonction $f: x \longmapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et

$$f'(x) = -\frac{1}{x^2}$$

 $donc \ f'(x) < 0 \ sur \] - \infty; \\ 0[\cup]0; + \infty[\ mais \ f \ n'est \ pas \ d\'{e}croissante \ sur \] - \infty; \\ 0[\cup]0; + \infty[\ puisque \ f(-1) < f(1) < f($



- Une fonction croissante sur I ou décroissante I est dite monotone sur I.
- Si f'(x) > 0 pour tout réel x de I = [a;b] ou $f'(x) \ge 0$ pour tout réel x de I = [a;b] mais ne s'annule qu'en un nombre fini de points de l'intervalle I = [a;b] alors on dit que f est **strictement** croissante.



Dans l'exemple ci-dessus, f'(x) ne s'annule qu'en x = c, f est alors **strictement** croissante sur l'intervalle I = |a;b|.

• On définit de manière analogue une fonction **strictement** décroissante sur l'intervalle I = [a; b].

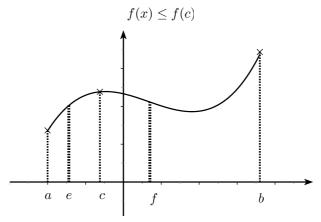
2 Extremum

a) Extremum local

Définition:

f est une fonction définie sur un intervalle I et c est un réel de I.

• f(c) est un maximum local s'il existe un intervalle ouvert J inclus dans I et contenant c tel que pour tout réel x de J,



Ici, f(c) est un maximum local puisque pour tout réel $x \in]e; f[, f(x) \leq f(c).$

• f(c) est un minimum local s'il existe un intervalle ouvert J inclus dans I et contenant c tel que pour tout réel x de J,

$$f(x) \ge f(c)$$

• f(c) est un extremum local si f(c) est un maximum local ou un minimum local.

Théorème: (admis)

f est une fonction dérivable sur un intervalle ouvert I et c est un réel de I.

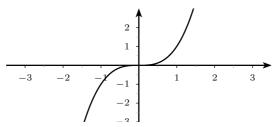
 $Si\ f(c)\ est\ un\ extremum\ local\ de\ f\ alors\ f'(c)=0$

Remarque:

La réciproque de ce théorème est fausse. En effet, la fonction $f:x\longmapsto x^3$ est dérivable sur $\mathbb R$ et

$$f'(x) = 3x^2$$

donc $f'(x) \geq 0$ sur \mathbb{R} d'où f est croissante sur \mathbb{R} .



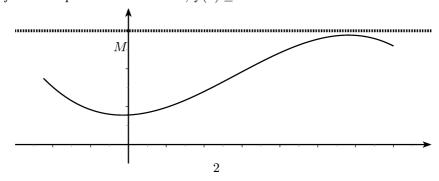
Or f'(0) = 0 et f(0) n'est pas un extremum local de f.

b) Majorant et minorant

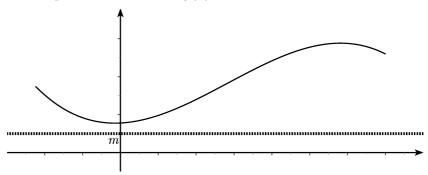
Définition:

f est une fonction définie sur un intervalle I.

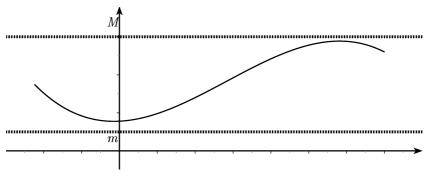
• M est un majorant de f sur I si pour tout réel x de I, $f(x) \leq M$.



• m est un minorant de f sur I si pour tout réel x de I, $f(x) \ge m$.



ullet f est bornée sur I si f admet un majorant et un minorant.



3 Équations f(x) = 0

Théorème: (admis)

f est une fonction dérivable et strictement monotone sur un intervalle [a; b].

 $Si\ f(a)\ et\ f(b)\ sont\ de\ signes\ contraires,\ alors\ l'équation\ f(x)=0\ admet\ une\ unique\ solution\ dans\ l'intervalle\ [a;b].$

