Localiser une solution de f(x)=0

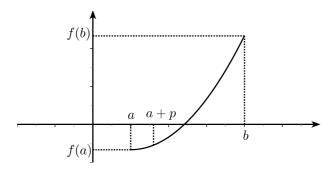
Théorème:

Soit f une fonction dérivable et strictement monotone sur un intervalle [a;b] tel que f(a) et f(b) sont de signes contraires. L'équation f(x) = 0 admet alors une unique solution α dans l'intervalle [a;b].

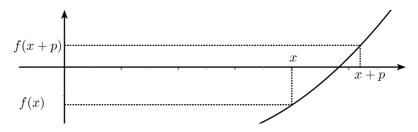
Le théorème ci-dessus donne l'existence d'un réel α dans l'intervalle [a;b] tel que $f(\alpha)=0$ mais ne nous donne pas le moyen de trouver α ou une valeur approchée de α .

A) Un premier algorithme

L'idée de cet algorithme est la suivante. On note p le pas qui correspondra à la précision obtenue pour l'encadrement de α :



- on pose x = a pour commencer;
- si $f(x) \times f(x+p) > 0$ alors on remplace x par x+p et on regarde de nouveau le signe de $f(x) \times f(x+p)$;
- si $f(x) \times f(x+p) < 0$ alors on peut affirmer que $x < \alpha \le x+p$.



1. Programmer l'algorithme ci-dessous à l'aide du logiciel Algobox :

<u>Variables</u> :
a,p
Algorithme:
Saisir a
Saisir p
Tant que $f(a) \times f(a+p) > 0$ faire
a reçoit $a+p$
FinTant
Afficher a
Afficher $a+p$

- 2. Prouver que l'équation $x^3 2x^2 + 4x 1 = 0$ admet une unique solution α dans l'intervalle [0; 1].
- 3. Trouver un encadrement d'amplitude 10^{-4} de α .
- 4. Prouver que l'équation $x^2 3 = 0$ admet une unique solution dans l'intervalle [0; 2].
- 5. Trouver un encadrement d'amplitude 10^{-3} de $\sqrt{3}$.

B) L'algorithme de dichotomie

 $1.\ Programmer l'algorithme ci-dessous à l'aide du logiciel Algobox :$

```
\frac{\text{Variables}:}{a, b, p}
\frac{\text{Algorithme}:}{\text{Saisir } a}
\frac{\text{Saisir } b}{\text{Saisir } p}
\text{Tant que } b - a > p \text{ faire}
\text{Si } f(a) \times f((a+b)/2) > 0
\text{Alors } a \text{ reçoit } (a+b)/2
\text{Sinon } b \text{ reçoit } (a+b)/2
\text{FinSi}
\text{FinTant}
\text{Afficher } a
\text{Afficher } b
```

- 2. Expliquer le fonctionnement de cet algorithme.
- 3. Trouver un encadrement d'amplitude 10^{-4} de α .
- 4. Trouver un encadrement d'amplitude 10^{-3} de $\sqrt{3}$.