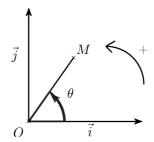
1 Coordonnées polaires d'un point

Soit $(O; \vec{i}, \vec{j})$ un repère orthonormal direct.



Pour tout point M du plan, distinct de l'origine, on pose r=OM et θ la mesure principale de l'angle orienté (\vec{i}, \vec{OM}) .

- Le couple $(r; \theta)$ ainsi défini est unique et il en découle que r > 0 et $\theta \in]-\pi;\pi]$.
- Réciproquement, à tout couple de réels $(r;\theta)$ tel que r>0 et $\theta\in]-\pi;\pi]$ correspond un unique point M du plan.

Remarque:

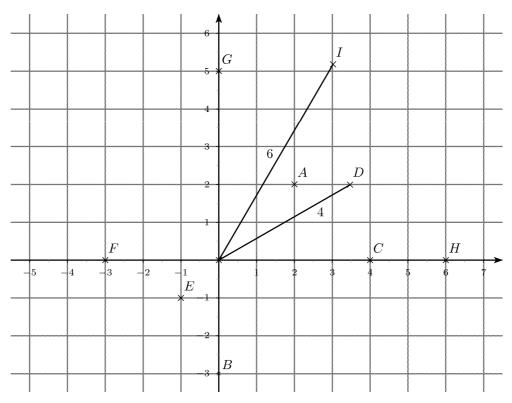
La demi-droite $(O; \vec{i})$ est appelée demi-axe polaire.

Définition:

Pour tout point M du plan distinct de l'origine O, le couple $(r;\theta)$ tel que r=OM et θ est la mesure principale de l'angle orienté (\vec{i}, \vec{OM}) est le couple de coordonnées polaires de M relatif au demi-axe polaire $(O; \vec{i})$.

Exercice 1:

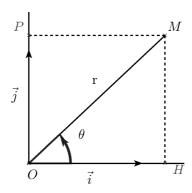
Pour chacun des points ci-dessous, déterminer ses coordonnées polaires dans le repère $(O; \vec{i})$ et ses coordonnées cartésiennes dans le repère $(O; \vec{i}, \vec{j})$:



Placer les points
$$M_1\left(2; -\frac{\pi}{6}\right)$$
, $M_2\left(2; \pi\right)$, $M_3\left(\sqrt{5}; \frac{2\pi}{3}\right)$ et $M_4\left(\sqrt{7}; \frac{5\pi}{6}\right)$.

2 Lien entre repérages cartésien et polaire

Dans un repère orthonormal direct $(O; \vec{i}, \vec{j})$, un point M distinct de O a pour coordonnées cartésiennes (x; y) et pour coordonnées polaires $(r; \theta)$ par rapport au demi-axe polaire $(O; \vec{i})$:



On observe ci-dessus que :

- $cos\theta = \dots donc \ OH = \dots donc \ x = \dots$
- $sin\theta = \dots donc \ HM = \dots donc \ y = \dots$
- $OM^2 = \dots$ donc $r^2 = \dots$ et comme r > 0 on a : $r = \dots$

Théorème:

Dans un repère orthonormal direct $(O; \vec{i}, \vec{j})$, un point M distinct de O a pour coordonnées cartésiennes (x; y) et pour coordonnées polaires $(r; \theta)$ par rapport au demi-axe polaire $(O; \vec{i})$, alors :

$$r = \sqrt{x^2 + y^2}$$
 ; $x = rcos(\theta)$; $y = rsin(\theta)$

Exercice 2:

Dans le repère $(O; \vec{i}, \vec{j})$, on a : A(2;0), $B(1; \sqrt{3})$, $C(-\sqrt{6}; \sqrt{2})$ et D(0; -3). Déterminer leurs coordonnées polaires dans le repère $(O; \vec{i})$.

Exercice 3:

Dans le repère polaire $(O; \vec{i})$, on a : $A(1; \pi)$, $B\left(5; -\frac{2\pi}{3}\right)$, $C\left(\sqrt{8}; \frac{3\pi}{4}\right)$ et $D\left(2; \frac{\pi}{2}\right)$.

Déterminer leurs coordonnées cartésiennes dans le repère orthonormée direct $(O; \vec{i}, \overrightarrow{j})$.

Exercice 4:

On considère les points A de coordonnées polaires (2;0); B image de A dans la rotation de centre O et d'angle $\frac{3\pi}{4}$ et I le milieu de [AB].

- 1. Placer les points A, B et I dans un repère orthonormée $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$
- 2. a. Déterminer les coordonnées cartésiennes de A.
 - b. Déterminer les coordonnées polaires de B. En déduire ses coordonnées cartésiennes.
 - c. En déduire que I a pour coordonnées cartésiennes $\left(\frac{2-\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)$.
- 3. a. Déterminer la nature du triangle OAB.
 - b. Montrer que $(\overrightarrow{OA}, \overrightarrow{OI}) = \frac{3\pi}{8}$.
 - c. En déduire les coordonnées polaires du point I.
 - d. En déduire que $\cos \frac{3\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$ et $\sin \frac{3\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$