Vecteur normal

Exercice 1:

Dans un repère orthonormal, soit (d) la droite passant par le point A(2;3) et $\overrightarrow{n}(-2;3)$ un vecteur normal à (d).

- 1. A quelle condition sur les vecteurs \overrightarrow{AM} et \overrightarrow{n} le point M appartient-il à la droite (d)?
- 2. En déduire une équation cartésienne de la droite (d).

Exercice 2:

Dans un repère orthonormal:

- 1. Soit (d) une droite d'équation ax + by + c = 0, $(a; b) \neq (0; 0)$. Montrer que $\overrightarrow{n}(a; b)$ est un vecteur normal à (d).
- 2. Soit (d) un vecteur non-nul $\overrightarrow{n}(a;b)$ normal à une droite (d). Montrer que (d) a une équation de la forme ax + by + c = 0.

Exercice 3:

Dans un repère orthonormal, les droites (d) et (d') ont pour équation respectives ax + by + c = 0 et a'x + b'y + c' = 0.

- 1. Montrer que (d) et (d') sont perpendiculaires si et seulement si aa' + bb' = 0
- 2. Montrer que (d) et (d') sont parallèles si et seulement si ab' a'b = 0

Exercice 4:

Dans un repère orthonormal, soit A(5;5), B(1;-3) et $\overrightarrow{p}(1;2)$.

- 1. Déterminer une équation cartésienne de la droite (d_1) passant par A de vecteur normal \overrightarrow{p} .
- 2. Déterminer une équation cartésienne de la droite (d_2) passant par B de vecteur directeur \overrightarrow{p} .
- 3. Déterminer une équation cartésienne de la droite (d_3) passant l'origine de vecteur directeur \overrightarrow{AB} .
- 4. Étudier les relations de parallélisme et d'orthogonalité des ces trois droites.

Exercice 5:

Dans un repère orthonormal, soit A(2;3), B(-5;2) et C(4;-2).

- 1. Déterminer les coordonnées de H, orthocentre du triangle ABC.
- 2. Déterminer les coordonnées de Ω , centre du cercle circonscrit au triangle ABC.
- 3. Déterminer les coordonnées de G, centre de gravité du triangle ABC.
- 4. Montrer que H, Ω et G sont alignés.