Devoir maison 5

Exercice 1: 10 points

Pour chacune des fonctions ci-dessous, déterminer la fonction dérivée en précisant le domaine de dérivabilité :

1.
$$f(x) = 7x^2 - 2\sqrt{x}$$

$$2. \ g(x) = 6x^7 + \frac{1}{4}x^4$$

3.
$$h(x) = \frac{1}{-3 + 2x}$$

4.
$$i(x) = \frac{4x+1}{x^2+x+2}$$

5.
$$j(x) = x\sqrt{x}$$

Exercice 2: 10 points

On note f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}x^2$.

Dans le plan muni d'un repère orthonormé, on appelle $\mathcal C$ la courbe de la fonction f.

On se propose de mettre en évidence, puis de démontrer une propriété du point d'intersection des tangentes à C aux points M et M' d'abscisses respectives t et -1/t où $t \in \mathbb{R}^*$

1. Construction et conjecture

a. A l'aide du logiciel Geogebra, tracer la courbe de f.

Aide : Entrer dans la barre de saisie $f(x) = \frac{1}{2}x^2$

b. Après avoir défini un curseur t, placer le point M d'abscisse t sur la courbe C.

Aide: Entrer dans la barre de saisie M = (t, f(t))

- c. Tracer la droite D tangente à C au point M.
- d. Placer le point M' d'abscisse -1/t sur la courbe C.
- e. Tracer la droite D' tangente à C au point M'.
- f. Placer le point d'intersection des droites D et D' et activer sa trace. On le notera I.
- g. Lorsque t varie dans \mathbb{R}^* , à quel ensemble le point I semble-t-il appartenir?

2. Démonstration

- a. Déterminer les équations des droites D et D^\prime en fonction de t.
- b. Déterminer les coordonnées du point I en fonction de t.
- c. Conclure sur la propriété conjecturée dans la partie précédente.