DEVOIR BILAN 7

Enseignant : GREAU D.

Nom:

Prénom:

 ${\bf Note}:$

 ${\bf Classe}:\ 1{\rm STMG}$

Date: 18/04/2013

Exercice 1: 5 points

Soit f la fonction définie sur \mathbb{R} par $f(x) = -2x^3 + 3x^2 + 12x + 9$.

- 1. Vérifier que la fonction dérivée de f est donnée par $f'(x) = -6x^2 + 6x + 12$
- 2. Étudier le signe de f' sur \mathbb{R} .
- 3. En déduire les variations de f sur \mathbb{R} .
- 4. Déterminer l'équation de la tangente T à la courbe de la fonction f au point d'abscisse 1.

Exercice 2: 2 points

Déterminer les fonctions dérivées des fonctions suivantes :

- 1. $f(x) = -3x^2 + 6x + 1$
- 2. $g(x) = 9x^3$

Exercice 3: 4 points

Soit X une variable aléatoire qui suit la loi binomiale de paramètres n=3 et p=0,2.

- 1. Déterminer $X(\Omega)$.
- 2. Compléter le tableau ci-dessous :

k	0	1	2	3
P(X=k)			0,096	
$P(X \le k)$		0,896		

Exercice 4: 1,5 points

A l'aide de votre calculatrice, déterminer $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$ et $\begin{pmatrix} 12 \\ 2 \end{pmatrix}$.

Exercice 5: 5,5 points

On lance cinq fois de suite un dé équilibré à quatre faces (numérotées 1, 2, 3 et 4). On note X la variable aléatoire qui indique le nombre de 4 obtenus.

- 1. Déterminer la loi de probabilité de X.
- 2. Déterminer P(X=2), la probabilité d'obtenir exactement deux 4.
- 3. Compléter le tableau ci-dessous :

k	0	1	2	3	4	5
P(X=k)	0,237					0,001

- 4. Déterminer $P(X \le 1)$, la probabilité d'obtenir au plus un 1.
- 5. Déterminer $P(X \ge 4)$, la probabilité d'obtenir au moins quatre 4.
- 6. Déterminer E(X).

Exercice 6: 2 points

En novembre 1976 dans un comté du sud du Texas, Rodrigo Partida est condamné à huit ans de prison. Il attaque ce jugement au motif que la désignation des jurés de ce comté est, selon lui, discriminante à l'égard des Américains d'origine mexicaine. Alors que 80% de la population du comté est d'origine mexicaine, sur les 870 personnes convoquées pour être jurés lors des années précédentes , il n'y a eu que 339 personnes d'origine mexicaine.

On suppose que les jurés sont choisis au hasard, le nombre de jurés d'origine mexicaine, noté X, suit la loi binomiale de paramètres n=870 et p=0,8.

- 1. Déterminer E(X).
- 2. Après calculs, on obtient que $P(650 \le X \le 750) \simeq 0,9999$. Pouvez-vous alors décider (en justifiant) si les Américains d'origine mexicaine sont sous-représentés dans les jurys de ce comté?