Intersections

Exercice 1:

Soit f et g deux fonctions définies sur \mathbb{R} par $f(x) = -x^2 + 6x - 6$ et g(x) = 4 - x.

- 1. Tracer à l'aide de votre calculatrice C_f et D_g , les courbes représentatives des fonctions f et g.
- 2. a. Dresser à l'aide d'une observation graphique le tableau de variation de la fonction f.
 - b. En déduire le nombre de solutions de f(x) = 0
 - c. Encadrer les solutions de l'équation f(x) = 0 au centième près à l'aide de votre calculatrice.
 - d. Montrer que $3-\sqrt{3}$ et $3+\sqrt{3}$ sont solutions de f(x)=0.
- 3. a. Montrer que f(x) g(x) = (-x+2)(x-5)
 - b. En déduire les coordonnées des points d'intersection de C_f et D_g .

Exercice 2:

Soit f et g deux fonctions définies sur \mathbb{R} par $f(x) = \frac{1}{5}(x-5)^2 - 1$ et $g(x) = -\frac{1}{5}x^2 + 4$.

- 1. Tracer à l'aide de votre calculatrice C_f et C_g , les courbes représentatives des fonctions f et g.
- 2. a. Dresser à l'aide d'une observation graphique le tableau de variation de la fonction f.
 - b. En déduire le nombre de solutions de f(x) = 0
 - c. Encadrer les solutions de l'équation f(x) = 0 au centième près à l'aide de votre calculatrice.
- 3. a. Montrer que pour tout réel x, $f(x) = \frac{1}{5}x^2 2x + 4$
 - b. En déduire les antécédents de 4 par la fonction f.
- 4. a. Déterminer les coordonnées des points d'intersection de C_f et C_g .
 - b. Déterminer les positions relatives de C_f et C_g .
- 5. Résoudre g(x) = 0 et f(x) = 0.