Chapitre 2: Vecteurs

1 Notion de vecteur

1.1 Définition

Définition:

Soit A et B deux points distincts du plan, le vecteur \overrightarrow{AB} est caractérisé par :

- sa direction : celle de la droite (AB) et de toutes les droites parallèles à (AB) ;
- son sens : celui de A vers B ;
- sa longueur : la distance AB qu'on appelle aussi la norme du vecteur \overrightarrow{AB} noté $\|\overrightarrow{AB}\|$.

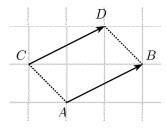
Remarque:

Si $A = \overrightarrow{B}$, le vecteur $\overrightarrow{AB} = \overrightarrow{AA}$ s'appelle le vecteur nul et est noté $\overrightarrow{0}$. Le vecteur n'a ni direction ni sens, sa longueur est égale à 0.

1.2 Égalité de deux vecteurs

Définitions

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si D est l'image de C par la translation de vecteur \overrightarrow{AB} .

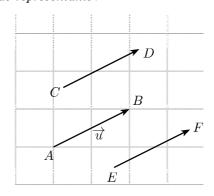


Conséquences:

- Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} non-nuls sont égaux s'ils ont même direction, même sens et même longueur.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme (qui peut-être aplati).

Remarque:

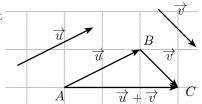
Soit $\overrightarrow{u} = \overrightarrow{AB}$ un vecteur non-nul du plan, on peut tracer à partir de n'importe quel point du plan un vecteur égal au vecteur \overrightarrow{u} . On dit que le vecteur \overrightarrow{u} a une infinité de représentants!



2 Additions de vecteurs

La somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur noté $\overrightarrow{u}+\overrightarrow{v}$ que l'on peut représenté de la manière suivante :

On choisit un point A quelconque, on place les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{BC} = \overrightarrow{v}$, alors le vecteur \overrightarrow{AC} représente le vecteur $\overrightarrow{u} + \overrightarrow{v}$.

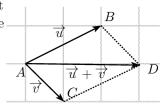


Relation de Chasles:

Pour tous points A, B et C:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

La somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} peut aussi être représenté de la manière suivante : On choisit un point A quelconque, on place les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$, alors le vecteur $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AD}$ tel que ABDC soit un parallélogramme éventuellement aplati.



Règle du parallélogramme :

Pour tous points A, B et C:

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$$

où D est tel que ABDC soit un parallélogramme éventuellement aplati.

3 Produit d'un vecteur par un réel

Définition:

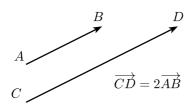
Soit \overrightarrow{AB} un vecteur non-nul du plan et λ un nombre réel non-nul :

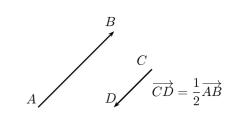
• Le vecteur $\lambda \overrightarrow{AB} = \overrightarrow{CD}$ a même direction que \overrightarrow{AB} , c'est à dire que $(AB) \setminus (CD)$

- $\bullet \overrightarrow{CD} \ a \ m \hat{e} m e \ sens \ que \ \overrightarrow{AB}$
- $CD = \lambda \times AB$

- \overrightarrow{CD} et \overrightarrow{AB} sont de sens contraire
- $CD = -\lambda \times AB$

Exemples:





Remarques:

- $Si \lambda = 0 \text{ ou } si \overrightarrow{AB} = \overrightarrow{0} \text{ alors } \lambda \overrightarrow{AB} = \overrightarrow{0}$.
- $Si \lambda = -1$:
 - On dit que \overrightarrow{AB} et $-\overrightarrow{AB}$ sont opposés;
 - Le vecteur qui a même longueur et même direction que le vecteur \overrightarrow{AB} mais qui a le sens opposés est le vecteur \overrightarrow{BA} donc :

$$-\overrightarrow{AB} = \overrightarrow{BA}$$

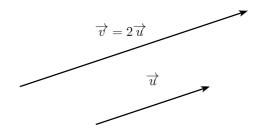
4 Vecteurs colinéaires

Définition:

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si l'un est le produit de l'autre par un réel.

Exemple:

 $\overrightarrow{v} = 2\overrightarrow{u} \ donc \ \overrightarrow{u} \ et \ \overrightarrow{v} \ sont \ colinéaires.$



Remarque:

Le vecteur nul est donc colinéaire à tous les vecteurs.

Propriété:

 $Si \overrightarrow{AB} et \overrightarrow{CD}$ sont deux vecteurs non-nuls, on a les équivalences suivantes :

$$\begin{array}{cccc} (AB) \ et \ (CD) & \overrightarrow{AB} \ et \ \overrightarrow{CD} & il \ existe \ un \\ sont & \Leftrightarrow & sont & \Leftrightarrow & nombre \ \lambda \ tel \ que \\ parallèles & colinéaires & \overrightarrow{CD} = \lambda \overrightarrow{AB} \end{array}$$

Propriété:

Trois points distincts du plan A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Preuve:

A, B et C sont alignés et distincts \Leftrightarrow $(AB) \setminus (AC) \Leftrightarrow \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires

5 Règles de calcul

Propriété:

Pour tous réels λ et β et pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} :

- $\lambda(\overrightarrow{u} + \overrightarrow{v}) = \lambda \overrightarrow{u} + \lambda \overrightarrow{v}$
- $(\lambda + \beta)\overrightarrow{u} = \lambda \overrightarrow{u} + \beta \overrightarrow{u}$
- $\lambda(\beta \overrightarrow{u}) = \lambda \beta \overrightarrow{u}$