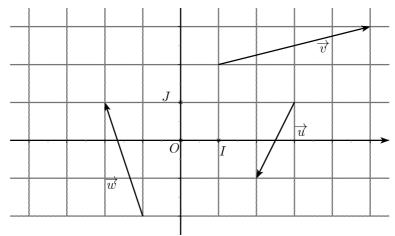
Vecteurs et coordonnées

Définition:

Dans un repère (O, I, J), les coordonnées du vecteur \overrightarrow{u} sont celles du point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

Exercice 1:

Dans le repère (O, I, J), ci-dessous :



- 1. Placer les points M, N et P tels que $\overrightarrow{OM} = \overrightarrow{u}$, $\overrightarrow{ON} = \overrightarrow{v}$ et $\overrightarrow{OP} = \overrightarrow{w}$.
- 2. En déduire les coordonnées des vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} .

Théorème:

Dans un repère (O, I, J), on a $A(x_A; y_A)$ et $B(x_B; y_B)$ alors les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$.

Exercice 2:

Dans un repère (O, I, J) du plan, soit A(-2, -3), B(-5, 1) et C(2, -3).

- 1. Placer les points A, B et C.
- 2. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

Propriété:

Dans un repère (O, I, J), les vecteurs $\overrightarrow{u}(x; y)$ et $\overrightarrow{v}(x'; y')$ sont égaux si et seulement si x = x' et y = y'.

Exercice 3:

Dans un repère (O, I, J) du plan, soit A(3; 5), B(2; -4), C(1; 7) et D(0; -2).

- 1. Placer les points A, B, C et D.
- 2. Déterminer les coordonnées des vecteurs \overrightarrow{AC} et \overrightarrow{BD} .
- 3. En déduire la nature du quadrilatère ABCD.

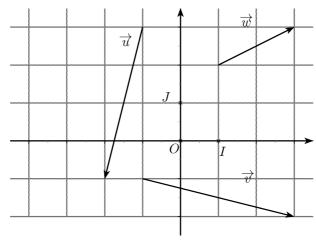
Théorème:

Dans un repère (O, I, J), on a $\overrightarrow{u}(x; y)$ et λ un nombre réel alors les coordonnées du vecteur $\lambda \overrightarrow{u}$ sont $(\lambda x; \lambda y)$.

Exercice 4:

Dans le repère (O, I, J), ci-dessous :

- 1. Déterminer les coordonnées de vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} .
- 2. Tracer les vecteurs $\frac{1}{4}\overrightarrow{u}$, $-\frac{1}{2}\overrightarrow{v}$ et $2\overrightarrow{w}$ et déterminer leurs coordonnées.



Théorème:

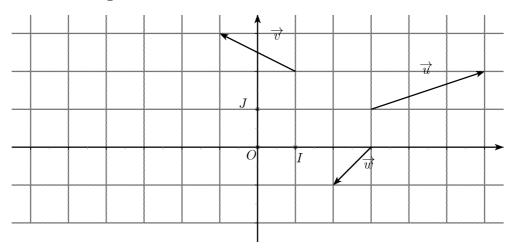
Dans un repère (O, I, J), on a $\overrightarrow{u}(x; y)$ et $\overrightarrow{v}(x'; y')$ alors :

les coordonnées du vecteur $\overrightarrow{u} + \overrightarrow{v}$ sont (x + x'; y + y').

Exercice 5:

Dans le repère (O, I, J), ci-dessous :

- 1. Déterminer les coordonnées de vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} .
- 2. Tracer les vecteurs $\overrightarrow{u} + \overrightarrow{v}$, $-\frac{3}{2}\overrightarrow{v} + \overrightarrow{w}$ et $\overrightarrow{u} \overrightarrow{w}$ et déterminer leurs coordonnées.



Théorème:

Dans un repère (O, I, J), on a $\overrightarrow{u}(x; y)$ et $\overrightarrow{v}(x'; y')$ alors :

 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si xy' - x'y = 0

Exercice 6:

Dans le repère (O, I, J), on a A(-5; 3), B(-3; 2) et C(1; 0).

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- 3. Déterminer le réel k tel que $\overrightarrow{AB} = k\overrightarrow{AC}$.

Théorème:

Dans un repère (O, I, J), on a $A(x_A; y_A)$ et $B(x_B; y_B)$ alors les coordonnées du milieu du segment [AB] sont :

$$\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$

Exercice 7:

Dans le repère (O, I, J), on a A(8; 9), B(3; 5) et C(-5; -5).

- 1. Déterminer les coordonnées de N milieu de [AB].
- 2. Déterminer les coordonnées de P milieu de [NC].