Chapitre 1: Vecteurs I

1 Notion de vecteur

Définition:

Soit A et B deux points distincts du plan, le vecteur \overrightarrow{AB} est caractérisé par :

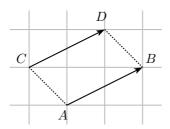
- sa direction : celle de la droite (AB) et de toutes les droites parallèles à (AB) ;
- son sens : de A vers B;
- sa norme : la distance AB que l'on note aussi $\|\overrightarrow{AB}\|$.

Remarque:

Si A = B, le vecteur $\overrightarrow{AB} = \overrightarrow{AA}$ s'appelle le vecteur nul et est noté $\overrightarrow{0}$. Le vecteur n'a ni direction ni sens, sa norme est égale à 0.

Définition:

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si D est l'image de C par la translation de vecteur \overrightarrow{AB} .

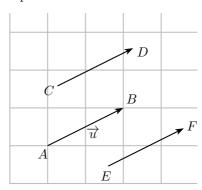


Conséquences:

- Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} non-nuls sont égaux s'ils ont même direction, même sens et même norme.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme (qui peut-être aplati).

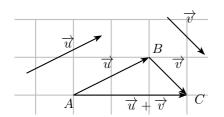
Remarque:

Soit $\overrightarrow{u} = \overrightarrow{AB}$ un vecteur non-nul du plan, on peut tracer à partir de n'importe quel point du plan un vecteur égal au vecteur \overrightarrow{u} . On dit que le vecteur \overrightarrow{u} a une infinité de représentants!



Additions de vecteurs 2

La somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur noté $\overrightarrow{u} + \overrightarrow{v}$ que l'on peut représenter de l'une des deux manières suivantes:

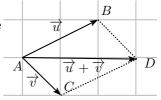


On choisit un point A quelconque, on place les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{BC} = \overrightarrow{v}$, alors le vecteur \overrightarrow{AC} représente le vecteur $\overrightarrow{u} + \overrightarrow{v}$.

Relation de Chasles

 $\overrightarrow{\text{Pour tous points } A, B \text{ et } C}, \quad \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

On choisit un point A quelconque, on place les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$, alors le vecteur $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AD}$ tel que \overrightarrow{ABDC} soit un parallélogramme éventuellement aplati.



Règle du parallélogramme)

Pour tous points A, B et C, $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ où D est tel que ABDC soit un parallélogramme éventuellement aplati.

3 Produit d'un vecteur par un réel

Définition:

Soit \overrightarrow{AB} un vecteur non-nul du plan et λ un nombre réel non-nul :

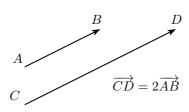
• Le vecteur $\lambda \overrightarrow{AB} = \overrightarrow{CD}$ a même direction que \overrightarrow{AB} , c'est à dire que $(AB) \setminus (CD)$

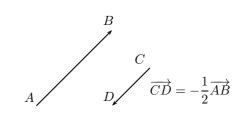
$$si \lambda > 0$$

- \overrightarrow{CD} a même sens que \overrightarrow{AB} | \overrightarrow{CD} et \overrightarrow{AB} sont de sens contraire $CD = \lambda \times AB$

Exemples:

Voici deux exemples avec $\lambda = 2$ et $\lambda = -\frac{1}{2}$





Remarques:

- $Si \ \lambda = 0 \ ou \ si \ \overrightarrow{AB} = \overrightarrow{0} \ alors \ \lambda \overrightarrow{AB} = \overrightarrow{0}$.
- $Si \lambda = -1$:
 - On dit que \overrightarrow{AB} et $-\overrightarrow{AB}$ sont opposés;
 - Le vecteur qui a même norme et même direction que le vecteur \overrightarrow{AB} mais qui a le sens opposés est le vecteur \overrightarrow{BA} donc :

$$-\overrightarrow{AB} = \overrightarrow{BA}$$

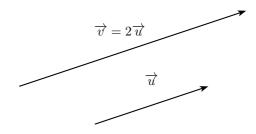
4 Vecteurs colinéaires

Définition:

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si l'un est le produit de l'autre par un réel.

Exemple:

 $\overrightarrow{v} = 2\overrightarrow{u} \ donc \ \overrightarrow{u} \ et \ \overrightarrow{v} \ sont \ colinéaires.$



Remarque:

Le vecteur nul est donc colinéaire à tous les vecteurs.

Propriété:

Si \overrightarrow{AB} et \overrightarrow{CD} sont deux vecteurs non-nuls, on a les équivalences suivantes :

Propriété:

Trois points distincts du plan A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Preuve:

A, B et C sont alignés et distincts $\Leftrightarrow (AB) \setminus (AC) \Leftrightarrow \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires