Utiliser sa calculatrice pour tracer une courbe

Exercice 1:

Soit f la fonction définie sur \mathbb{R} par $f(x) = -(x-3)^2 + 4$.

- 1. Montrer que pour tout réel x, $f(x) = -x^2 + 6x 5$.
- 2. Déterminer les images des nombres suivants par la fonction f:

$$-4$$
 ; $-\sqrt{2}$; 0 ; $\frac{1}{2}$; $3+\sqrt{3}$

- 3. A l'aide de la fonction TABLE de votre calculatrice, afficher le tableau de valeurs de la fonction f pour x variant de 0 à 6 avec un pas de 0, 5. (voir page 42 du manuel)
- 4. Compléter le tableau suivant :

x	0	0, 5	1	1, 5	2	2, 5	3	3,5	4	4, 5	5	5, 5	6
f(x)													

- 5. Tracer la courbe représentative de la fonction f sur l'écran de votre calculatrice pour x variant de 0 à 6. (voir page 42 du manuel)
- 6. Tracer la courbe représentative de la fonction f dans un repère pour $x \in [0, 6]$.

Exercice 2:

Soit g la fonction définie sur \mathbb{R} par $g(x) = \frac{3x+1}{x^2+1}$.

- 1. Déterminer l'image de -1 par la fonction g.
- 2. Donner l'arrondi à 10^{-4} près de :

$$g(-4)$$
 ; $g(2,5)$; $g(13)$

- 3. A l'aide de la fonction TABLE de votre calculatrice, afficher le tableau de valeurs de la fonction g pour x variant de -5 à 5 avec un pas de 0, 5.
- 4. Tracer la courbe représentative de la fonction g sur l'écran de votre calculatrice pour x variant de -5 à 5.
- 5. Tracer la courbe représentative de la fonction g dans un repère pour $x \in [-5, 5]$.
- 6. Résoudre graphiquement g(x) = 0.
- 7. Résoudre algébriquement g(x) = 0.