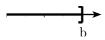
Inégalités et intervalles

Définitions:

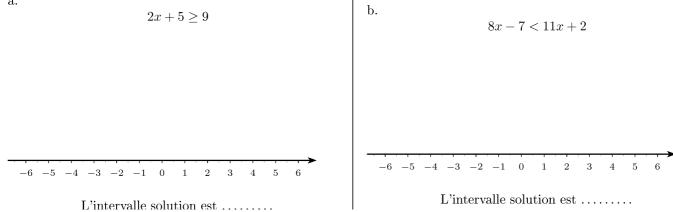
• L'intervalle fermé [a;b] est l'ensemble de tous les nombres réels x tels que $a \le x \le b$.


• L'intervalle ouvert |a;b| est l'ensemble de tous les nombres réels x tels que a < x < b.

• L'intervalle $[a; +\infty[$ est l'ensemble de tous les nombres réels x tels que $a \le x$.

• L'intervalle $]-\infty;b[$ est l'ensemble de tous les nombres réels x tels que $x\leq b.$

Exercice 1:


Compléter le tableau ci-dessous :

Inégalité	Représentation sur un axe	Intervalle
$-5 \le x \le 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[-5; 2]
$-2 \le x < 4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$2 \ge x$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
x > 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Exercice 2:

Surligner les nombres solutions des inéquations suivantes et compléter les phrases correspondantes

a.

Définitions:

- L'intersection de deux intervalles est l'ensemble des nombres appartenant aux deux intervalles à la fois.
- L'union de deux intervalles est l'ensemble des nombres appartenant à l'un (au moins) des deux intervalles.

Exercice 3:

Déterminer l'intersection des intervalles suivants (le symbole \cap se lit "inter" et représente l'intersection) :

Intersection	Représentation sur un axe	Intervalle
$[-4;5] \cap [3;+\infty[$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$]-\infty;3]\cap]2;4[$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$[5; +\infty \cap [-3; 5[$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Exercice 4:

Déterminer l'union des intervalles suivants (le symbole \cup se lit "union" et représente l'union) :

Union	Représentation sur un axe	Intervalle
$[-4;5] \cup [3;6]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$]-\infty;3]\cup]2;4[$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$[5; +\infty[\cup[-3; 5[$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Exercice 5:

Déterminer les nombres réels x tels que :

a.
$$2x - 3 < 0$$
 et $-2x + 3 < 4$

b.
$$-4x + 1 \le 0$$
 ou $5x + 1 \le 2$

Exercice 6:

Donner un système de deux inéquations définissant l'intervalle]-3;9].