Chapitre 14: Fonctions polynômes du second degré

1 Définition

Définition:

On appelle fonction polynôme du second degré toute fonction f définie sur $\mathbb R$ par

$$f(x) = \dots$$

où a, b et c sont trois nombres réels avec $a \neq 0$.

Remarque:

Les fonctions polynômes du second degré sont aussi appelées trinômes du second degré.

Exemples:

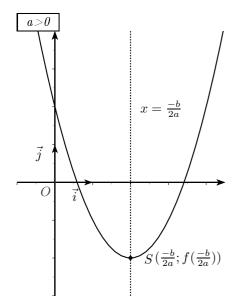
- $f(x) = 5x^2 + 4x 3$ est une fonction du second degré avec $a = \dots, b = \dots$ et $c = \dots$
- g(x) = -3(x-4)(x+5) est une fonction du second degré avec $a = \dots$, $b = \dots$ et $c = \dots$ puisque :

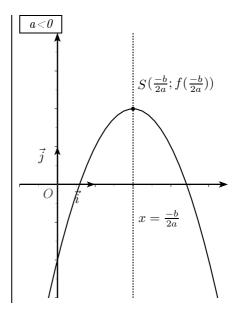
$$g(x) = \\ = \\ = \\ =$$

- La fonction carré définie par $x \mapsto x^2$ est une fonction du second degré avec $a = \dots, b = \dots$ et $c = \dots$
- La fonction affine h(x) = 2x + 1 n'est pas une fonction polynôme du second degré puisque

2 Courbes représentatives et sens de variation

Propriété:


Soit f une fonction polynôme du second degré définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.


• Si a > 0 alors la représentation graphique de la fonction f est une parabole ayant "les branches tournées vers le haut" et f admet le tableau de variation suivant :

• Si a < 0 alors la représentation graphique de la fonction f est une parabole ayant "les branches tournées vers le bas" et f admet le tableau de variation suivant :

Remarque:

Dans un repère orthogonal, la droite d'équation $x = \frac{-b}{2a}$ est un axe de symétrie de la parabole.

