Chapitre 4: Limites

1 Limites des fonctions usuelles

Voici un récapitulatif des limites des fonctions usuelles aux bornes de leur domaine de définition :

2 Opérations sur les limites

Soit f et g deux fonctions dont on connait la limite en un réel a (ou en $-\infty$ ou en $+\infty$). La question légitime que l'on peut se poser est :

Les fonctions f + g, $f \times g$ et $\frac{f}{g}$ ont-elles une limite et si oui quelle est-elle?

2.1 Limite d'une somme

Théorème:

Dans le tableau suivant, l'et l' sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l	l	$+\infty$	$-\infty$	$+\infty$
et la limite de g en a est	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
alors la limite de $(f+g)$ en a est						

FI signifie forme indéterminée, c'est à dire qu'on doit effectuer une étude particulière pour déterminer la limite de (f+g).

Exemples:

$$\lim_{x \to -\infty} x^2 = \dots \quad et \quad \lim_{x \to -\infty} \frac{1}{x} = \dots \quad donc \quad \lim_{x \to -\infty} x^2 + \frac{1}{x} = \dots$$

$$\lim_{x \to +\infty} -3x + 2 = \dots \quad et \quad \lim_{x \to +\infty} -\sqrt{x} = \dots \quad donc \quad \lim_{x \to +\infty} -3x + 2 - \sqrt{x} = \dots$$

$$\lim_{x \to 0^+} \sqrt{x} = \dots \quad et \quad \lim_{x \to 0^+} \frac{1}{x} = \dots \quad donc \quad \lim_{x \to 0^+} \sqrt{x} + \frac{1}{x} = \dots$$

2.2 Limite d'un produit

Théorème:

Dans le tableau suivant, l'et l'sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
et la limite de g en a est	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$-\infty$
alors la limite de $(f \times g)$ en a est									

Exemples:

$$\lim_{x \to +\infty} \sqrt{x} = \dots \quad et \quad \lim_{x \to +\infty} -x^2 = \dots \quad donc \quad \lim_{x \to +\infty} -x^2 \sqrt{x} = \dots$$

$$\lim_{x \to -\infty} 2 + \frac{1}{x} = \dots \quad et \quad \lim_{x \to -\infty} 3 + \frac{1}{x} = \dots \quad donc \quad \lim_{x \to -\infty} (2 + \frac{1}{x})(3 + \frac{1}{x}) = \dots$$

2.3 Limite d'un quotient

On distingue ici deux cas:

le dénominateur a une limite non-nul :

Théorème:

Dans le tableau suivant, l'et l' sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$-\infty$
et la limite de g en a est	$l' \neq 0$	+∞	l' > 0	l' < 0	l' > 0	l' < 0	+∞
alors la limite de $\frac{f}{g}$ en a est							

Exemple:

$$\lim_{x \to +\infty} \sqrt{x} = \dots \quad et \quad \lim_{x \to +\infty} -2 + \frac{1}{x} = \dots \quad donc \quad \lim_{x \to +\infty} \frac{\sqrt{x}}{-2 + \frac{1}{x}} = \dots$$

le dénominateur a une limite nul :

Théorème:

Dans le tableau suivant, l'est un réel non-nul et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l > 0	l > 0	l < 0	l < 0	0
et la limite de g en a est	0+	0-	0+	0-	0
alors la limite de $\frac{f}{g}$ en a est					

Exemple:

$$\lim_{x\to 0^+} \sqrt{x} = \dots \quad et \quad \lim_{x\to 0^+} 2x + 7 = \dots \quad donc \quad \lim_{x\to +\infty} \frac{2x+7}{\sqrt{x}} = \dots$$

3 Formes indéterminées

D'après ce qui a été vu précédemment, on compte quatre formes indéterminés :

Dans ce cas, il faut faire une étude particulière pour "lever l'indétermination".

Nous allons ici étudier de façon général les limites à l'infini des fonctions polynômes et rationnelles pour lever immédiatement les éventuelles indétermination.

3.1Limites à l'infini des fonctions polynômes

Théorème:

La limite d'une fonction polynôme en $+\infty$ (ou en $-\infty$) est

Exemple:

Soit la fonction polynôme $f(x) = 5x^3 - 7x^2 + 3x - 8$, son monôme de plus haut degré est ... :

$$\lim_{x \to +\infty} 5x^3 = \dots \quad donc \quad \lim_{x \to +\infty} f(x) = \dots$$

3.2 Limites à l'infini des fonctions rationnelles

Théorème:

La limite d'une fonction rationnelle en $+\infty$ (ou en $-\infty$) est

Soit la fonction rationnelle $f(x) = \frac{5x^3 - 7x^2 + 3x - 8}{-6x^4 + 2}$, son monôme de plus haut degré au numérateur est et son monôme de plus haut degré au dénominateur est : $Pour x \neq 0$,

Limite de fonction composée 4

Chacune des lettres a, b et c désigne soit un réel, soit $-\infty$, soit $+\infty$.

Théorème:

Soit f, g deux fonctions, si

$$\lim_{x \to a} f(x) = b \qquad \epsilon$$

$$\lim_{x \to a} f(x) = b \qquad et \qquad \lim_{X \to b} g(X) = c \qquad alors \qquad \lim_{x \to a} g[f(x]) = c$$

$$\lim_{x \to a} g[f(x]) = e^{-\frac{1}{2}}$$

Exemple:

Étude de la limite en 4 de $\frac{1}{(x-4)^2}$

 $On \ a$:

$$\lim_{x \to 4} (x - 4)^2 = \dots$$

Posons $X = (x-4)^2$ alors

$$\lim_{X\to\dots}\frac{1}{X}=\dots$$

Conclusion:

$$\lim_{X \to 4} \frac{1}{(x-4)^2} = \dots$$

5 Théorème de comparaison

Théorème:

L désigne un réel, si pour tout x d'un intervalle $|b; +\infty|$:

$$u(x) \le f(x) - L \le v(x)$$

et

$$\lim_{x \to +\infty} u(x) = 0 \quad et \quad \lim_{x \to +\infty} v(x) = 0$$

Alors:

$$\lim_{x \to +\infty} f(x) = \dots$$

Le théorème suivant dit qu'une fonction plus grande qu'une autre fonction qui tend vers $+\infty$ tend elle aussi vers $+\infty$.

Théorème:

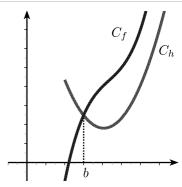
Si pour tout x d'un intervalle $]b; +\infty[$:

et

$$\lim_{x \to +\infty} h(x) = +\infty$$

Alors:

$$\lim_{x \to +\infty} f(x) = \dots$$



Le théorème suivant dit qu'une fonction plus petite qu'une autre fonction qui tend vers $-\infty$ tend elle aussi vers $-\infty$.

Théorème:

Si pour tout x d'un intervalle $b; +\infty[$:

$$f(x) \le h(x)$$

et

$$\lim_{x \to +\infty} h(x) = -\infty$$

Alors:

$$\lim_{x \to +\infty} f(x) = \dots$$

Remarque:

Les trois théorèmes suivants sont aussi valables lorsqu'on prend la limite en un réel a ou en $-\infty$.