Primitives usuelles

A) Fonctions usuelles

- 1. a. Déterminer la dérivée de la fonction $g: x \longmapsto kx$
 - b. En déduire les primitives de la fonction $f: x \longmapsto k$
- 2. a. Déterminer la dérivée de la fonction $g: x \longmapsto \frac{x^2}{2}$
 - b. En déduire les primitives de la fonction $f: x: \longrightarrow x$
- 3. a. Déterminer la dérivée de la fonction $g: x \longmapsto$
 - b. En déduire les primitives de la fonction $f: x \longmapsto \frac{1}{x^2}$
- 4. a. Déterminer la dérivée de la fonction $g: x \longmapsto \frac{x^{n+1}}{n+1}$ pour $n \in \mathbb{N} \setminus \{-1\}$
 - b. En déduire les primitives de la fonction $f: x \longmapsto x^r$

B) Primitives de f + g et de kf avec k réel

F et G sont des primitives respectives des fonctions f et g sur I et k est un nombre réel.

- 1. Déterminer les primitives de la fonction f + g
- 2. Déterminer les primitives de la fonction $k \cdot f$

C) Primitives des fonctions polynômes

- 1. a. Déterminer une primitive sur \mathbb{R} de la fonction $f_1(x) = 3x^3$
 - b. Déterminer une primitive sur \mathbb{R} de la fonction $f_2(x) = -5x^2$
 - c. Déterminer une primitive sur \mathbb{R} de la fonction $f_3(x)=6$
 - d. En déduire une primitive sur \mathbb{R} de la fonction $f(x) = 3x^3 5x^2 + 6$
- 2. Déterminer une primitive sur \mathbb{R} de la fonction $g(x) = \frac{3x^5}{4} 6x^3 + x^2$
- 3. Déterminer une primitive sur \mathbb{R} de la fonction $h(x) = x^4 + x^3 + x^2 + x + 1$
- 4. Soit u une fonction dérivable sur I.
 - a. Déterminer la fonction dérivée de $m: x \longmapsto \frac{u^{n+1}}{n+1}$ pour $n \in \mathbb{N}$
 - b. En déduire les primitives de la fonction $p: x \longmapsto u' \cdot u^n$ pour $n \in \mathbb{N}$
 - c. Déterminer une primitive sur \mathbb{R} de la fonction $k(x) = 2(6x-3)^3$

D) Primitives des fonctions rationnelles

- 1. a. Déterminer une primitive sur $]0; +\infty[$ de la fonction $f_1(x) = \frac{1}{x^3}$
 - b. Déterminer une primitive sur $]0;+\infty[$ de la fonction $f_2(x)=\frac{4}{x^5}$
 - c. En déduire une primitive sur]0; $+\infty$ [de la fonction $f(x) = \frac{1}{x^3} + \frac{4}{x^5}$
- 2. Déterminer une primitive sur] $-\infty$; 0[de la fonction $g(x) = \frac{7}{3x^2} 5x^{-3}$
- 3. Soit u une fonction dérivable sur I tel que $u(x) \neq 0$ pour tout réel $x \in I$
 - a. Déterminer la fonction dérivée de $m: x \longmapsto \frac{u^{n+1}}{n+1}$ pour $n \le -2$
 - b. En déduire les primitives de la fonction $p: x \longmapsto u' \cdot u^n$ pour $n \leq -2$
 - c. Déterminer une primitive sur $\left| \frac{9}{2}; +\infty \right|$ de la fonction $k(x) = \frac{8}{(2x-9)^2}$

E) Primitives et racines carrées

- 1. a. Déterminer la dérivée de la fonction $g: x \longmapsto \sqrt{x}$
 - b. En déduire les primitives de la fonction $f: x \longmapsto \frac{1}{\sqrt{x}}$
- 2. Soit u une fonction dérivable sur I tel que u(x)>0 pour tout réel $x\in I.$
 - a. Déterminer la fonction dérivée de $m: x \longmapsto 2\sqrt{u}$
 - b. En déduire les primitives de la fonction $p: x \longmapsto \frac{u'}{\sqrt{u}}$
 - c. Déterminer une primitive sur $\left]\frac{3}{4};+\infty\right[$ de la fonction $k(x)=\frac{2}{\sqrt{4x-3}}$