Exercice 1:

4 points

1. d.
$$f(x) = x^2 - x - 1$$

d. continue sur [-2; 1].

3.
$$c. h(x) = x - 1$$

4.
$$d. x \mapsto |x-3|$$

Exercice 2:

4 points

a. f est dérivable sur \mathbb{R} comme fonction polynôme et :

$$f'(x) = 6 \times 3x^2 - 2 \times x + 0 = 18x^2 - 2$$

b. g est dérivable sur $\mathbb{R}-\left\{\frac{5}{4}\right\}$ comme fonction rationnelle dont le dénominateur s'annule en $\frac{5}{4}$ et en posant v(x) = 4x - 5, on a :

$$g'(x) = \frac{-v'}{v^2} = \frac{-4}{(4x-5)^2}$$

c. $\frac{1}{x}$ est dérivable sur \mathbb{R}^* et \sqrt{x} est dérivable sur $]0;+\infty[$ donc h est dérivable sur $]0; +\infty[$ et $h'(x) = \frac{-1}{x^2} + \frac{1}{2\sqrt{x}}$

Exercice 3:

5 points

1. La fonction f n'est pas continue sur l'intervalle [0; 5].

2. a. f est continue et strictement croissante sur [0;3], de plus :

$$f(0) = -3$$
 et $f(3) = 1, 5$ donc $0 \in [f(0); f(3)]$

donc d'après le théorème de la valeur intermédiaire, il existe un unique réel α , $\alpha \in [0, 3]$ tel que $f(\alpha) = 0$.

b.
$$\alpha \simeq 1, 2$$

3. a. $\alpha \simeq 1,27$

b.
$$-\frac{x^2}{2} + 3x - 3$$
 est un polynôme du second degré et $\Delta = 3$ donc $-\frac{x^2}{2} + 3x - 3 = 0$ admet deux solutions : $x_1 = 3 + \sqrt{3}$ et $x_2 = 3 - \sqrt{3}$

c. $x_1 \notin [0; 3]$ alors que $x_2 \in [0; 3]$ donc la valeur exacte de α est $3 - \sqrt{3}$.

Exercice 4:

7 points

1. f est une fonction polynôme, elle se comporte au voisinage de l'infini comme son monôme de plus haut degré $\frac{1}{3}x^3$ et :

$$\lim_{x \to -\infty} \frac{1}{3}x^3 = -\infty \qquad donc \qquad \lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} \frac{1}{3}x^3 = +\infty \qquad donc \qquad \lim_{x \to +\infty} f(x) = +\infty$$

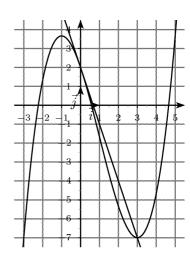
2. a. P est un polynôme du second degré et $\Delta=16$ donc $x^2 - 2x - 3 = 0$ admet deux solutions : $x_1 = -1$ et $x_2 = 3$ et comme a = 1 > 0, on a :

x	$-\infty$ -1	$3 + \infty$
P(x)	+ 0 -	- 0 +

b. f est dérivable sur $\mathbb R$ comme fonction polynôme et $f'(x) = x^2 - 2x - 3 = P(x)$ donc:

x	$-\infty$		-1		3		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	/		✓ ¹¹ / ₃ \		\ _7		A

3. Voir repère



a. L'équation réduite de la tangente T à la courbe C_f au point d'abscisse 0 est donnée par :

$$y = f'(0)(x-0) + f(0) y = -3x + 2$$

$$f'(0) = -3 f(0) = 2$$

b. Position relative de T et C_f .

$$f(x) - (-3x + 2) = \frac{1}{3}x^3 - x^2 = x^2\left(\frac{1}{3}x - 1\right)$$

x	$-\infty$ 0 3 $+\infty$
x^2	+ 0 + +
$\frac{1}{3}x - 1$	$- - \emptyset +$
f(x) - (-3x + 2)	-0-0+

 C_f et T se coupent pour x=0 et x=3. C_f est au dessus de T pour $x\in]3;+\infty[$. C_f au dessous de T pour $x\in]-\infty;0[\cup]0;3[$.

c. Voir repère