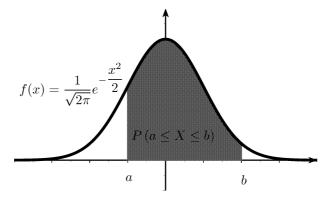
Chapitre 10: Lois normales

1 Loi normale centrée réduite

Définition:

Une variable aléatoire X suit la loi normale centrée réduite $\mathcal{N}(0;1)$ si, pour tous réels a et b, tels que a < b:

$$P\left(a \le X \le b\right) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \,\mathrm{d}x$$



On dit que $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ est le fonction de densité de la loi $\mathcal{N}(0;1)$

Propriété:

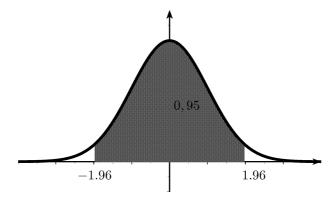
Soit X une variable aléatoire qui suit la loi $\mathcal{N}(0;1)$. X admet donc f pour densité et :

- L'aire totale sous la courbe de f est égale à 1, c'est à dire $P(X \in \mathbb{R}) = 1$;
- $\bullet \ \textit{La courbe \mathcal{C}_f représentative de la fonction f est symétrique par rapport \`a l'axe des ordonnées (on dit que f est paire);}$
- E(X) = 0; V(X) = 1 et $\sigma(X) = 1$.

Propriété:

Le résultat suivants est à connaître (ou à savoir retrouver!) :

$$P(-1,96 \le X \le 1,96) \simeq 0,95$$



2 Loi normale générale

Définition:

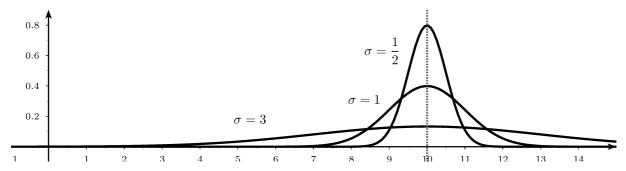
Une variable aléatoire X suit la loi normale $\mathcal{N}(\mu; \sigma^2)$ si la variable aléatoire $\frac{X - \mu}{\sigma}$ suit la loi normale centrée réduite $\mathcal{N}(0; 1)$ où σ est un réel strictement positif.

Propriété:

Si une variable aléatoire X suit la loi normale $\mathcal{N}(\mu; \sigma^2)$ alors $E(X) = \mu$; $V(X) = \sigma^2$ et $\sigma(X) = \sigma$.

Exemples:

La densité de probabilité de X qui suit une loi normale $\mathcal{N}(\mu; \sigma^2)$ est représenté par une « courbe en cloche » dont l'axe de symétrie a pour axe $x = \mu$ et qui est plus ou moins étirée selon les valeurs prises par σ . Pour $\mu = 10$, on a tracé ci-dessous la densité de X qui suit une loi normale $\mathcal{N}(\mu; \sigma^2)$ pour trois valeurs différentes de σ :



Propriété:

Si une variable aléatoire X suit la loi normale $\mathcal{N}(\mu; \sigma^2)$ alors on a :

- $P(X \in [\mu \sigma; \mu + \sigma]) \simeq 0.68$
- $P(X \in [\mu 2\sigma; \mu + 2\sigma]) \simeq 0.95$
- $P(X \in |\mu 3\sigma; \mu + 3\sigma|) \simeq 0,997$