Étude de la fonction logarithme

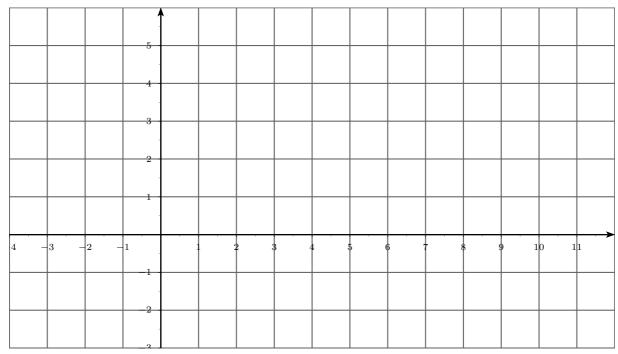
I. Étude de la fonction logarithme

Théorème:

La fonction $f: x \longmapsto \ln x$ est dérivable sur $]0; +\infty[$ et

$$f'(x) = \frac{1}{x}$$

- 1. Étudier la continuité de la fonction f.
- 2. Étudier les variations de la fonction f.
- 3. En déduire le signe de la fonction f.
- 4. Tracer la courbe de la fonction f dans le repère ci-dessous.



- 5. Déterminer les équations des tangentes à la courbe de la fonction f en 1 et e puis tracer ces deux tangentes.
- 6. Tracer dans ce même repère la droite d'équation y = x et la courbe de la fonction exponentielle.
- 7. Que remarque t'on?

II. Étude de fonctions associées

Théorème:

Si u est un fonction dérivable sur un intervalle I tel que pour tout réel $x \in I$, u(x) > 0 alors la fonction $f: x \longmapsto \ln[u(x)]$ est dérivable sur I et pour tout réel x de I,

$$f'(x) = \frac{u'(x)}{u(x)}$$

- 1. Soit f la fonction définie par $f(x) = \ln(x^2 + x + 1)$
 - a. Déterminer le domaine de définition de f.
 - b. Étudier les variations de la fonction f.
 - c. Déterminer les antécédents de 0 par la fonction f.
 - d. En déduire le signe de la fonction f.
 - e. Déterminer les équations des tangentes à la courbe de la fonction f en -1 et 0.
- 2. Soit g la fonction définie par $g(x) = \ln[-(x-2)(x-8)]$. Répondre aux mêmes questions que précédemment.