Chapitre 9: Fonctions convexes

1 Définition

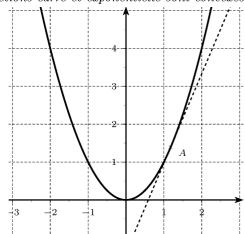
Définition:

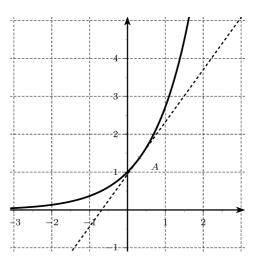
Une fonction dérivable sur un intervalle I est dite convexe sur cet intervalle si sa courbe représentative est entièrement située au-dessus de chacune de ses tangentes.

Une fonction dérivable sur un intervalle I est dite concave sur cet intervalle si sa courbe représentative est entièrement située au-dessous de chacune de ses tangentes.

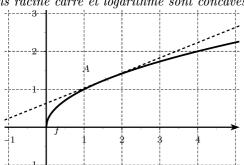
Exemples:

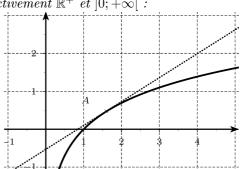
Les fonctions carré et exponentielle sont convexes sur $\mathbb R$:





Les fonctions racine carré et logarithme sont concaves sur respectivement \mathbb{R}^+ et $]0;+\infty[$:





2 Propriétés

Théorème:

Si f est une fonction convexe et dérivable sur un intervalle I et si pour un réel $c \in I$, f'(c) = 0 alors f admet un minimum absolu en c.

Si f est une fonction concave et dérivable sur un intervalle I et si pour un réel $c \in I$, f'(c) = 0 alors f admet un maximum absolu en c.

Démonstration:

Si f est une fonction convexe dont la courbe de f est située au-dessus de ses tangentes donc pour tout $x \in I$:

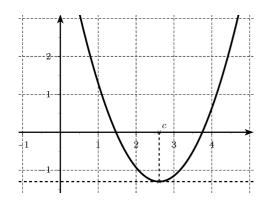
$$f(x) \ge f'(c)(x - c) + f(c)$$

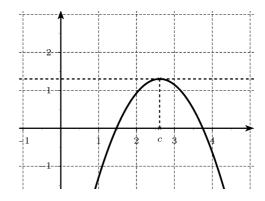
et comme f'(c) = 0, on a:

$$f(x) \ge f(c)$$

Ainsi f(c) est un minimum absolu pour f sur I. La démonstration est similaire pour f concave.

Exemples:





Théorème:

Si f est une fonction convexe et dérivable sur un intervalle I alors -f est concave sur I. Si f est une fonction concave et dérivable sur un intervalle I alors -f est convexe sur I.

3 Lien entre convexité et sens de variation de f'

Théorème:

Soit f une fonction dérivable sur I alors on a les équivalences suivantes :

f concave $sur\ I \iff f'$ est décroissante $sur\ I$

f convexe $sur\ I \iff f'$ est $croissante\ sur\ I$

Théorème:

Soit f une fonction définie sur |a;b|, si la dérivée seconde f'' existe sur |a;b| alors :

- Si, pour tout réel $x \in]a; b[, f''(x) \ge 0 \text{ alors } f \text{ est convexe sur }]a; b[;$
- Si, pour tout réel $x \in]a; b[, f''(x) \le 0$ alors f est concave sur]a; b[.

Remarque:

Ce théorème est vrai si $a = -\infty$ ou $b = +\infty$.

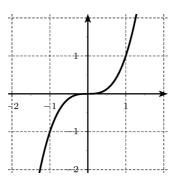
4 Point d'inflexion

Définition:

Un point d'inflexion d'une courbe est un point où la courbe traverse la tangente.

Exemple:

La fonction cube $x \mapsto x^3$ est définie sur \mathbb{R} . La courbe de cette fonction admet pour tangente en l'origine la droite d'équation y = f'(0)(x-0) + f(0) soit y = 0 pusique $(x^3)' = 2x^2$. La courbe de cette fonction traverse la tangente en l'origine donc l'origine est un point d'inflexion de cette courbe.



Théorème:

Soit f une fonction définie sur |a;b| et telle que f'' existe sur |a;b|.

Si f'' s'annule en c en changeant de signe, le point A(c; f(c)) est un point d'infexion de la courbe représentative de f.

Remarque:

La condition f'' s'annule en c n'est pas suffisante pour établir le point d'inflexion.