Exercices type bac

Nouvelle Calédonie Mars 2011(5 points)

Partie A: Restitution organisée de connaissances

On utilisera le résultat suivant : les solutions de l'équation différentielle y'=ay où $a\in\mathbb{R}$ sont les fonctions g définies sur \mathbb{R} par $g(x)=K\mathrm{e}^{ax}$ où $K\in\mathbb{R}$.

Le but de cette partie est de déterminer les solutions de l'équation différentielle (E) y' = ay + b où $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$.

- 1. Démontrer que la fonction u définie sur \mathbb{R} par $u(x) = -\frac{b}{a}$ est une solution de (E).
- 2. Soit f une fonction définie et dérivable sur \mathbb{R} . Démontrer l'équivalence suivante : f est solution de $(E) \iff f u$ est solution de l'équation différentielle y' = ay.
- 3. En déduire toutes les solutions de l'équation différentielle (E).

Partie B

Un cycliste roule sur une route descendante rectiligne et très longue. On note v(t) sa vitesse à l'instant t, où t est exprimé en secondes et v(t) en mètres par seconde.

On suppose de plus que la fonction v ainsi définie est dérivable sur l'intervalle $[0; +\infty[$.

Un modèle simple permet de considérer que la fonction v est solution de l'équation différentielle :

$$10v'(t) + v(t) = 30.$$

Enfin, on suppose que, lorsque le cycliste s'élance, sa vitesse initiale est nulle, c'est-à-dire que v(0) = 0.

- 1. Démontrer que $v(t) = 30 \left(1 e^{-\frac{t}{10}}\right)$.
- 2. a. Déterminer le sens de variation de la fonction v sur l'intervalle $|0; +\infty|$.
 - b. Déterminer la limite de la fonction v en $+\infty$.
- 3. On considère, dans cette situation, que la vitesse du cycliste est stabilisée lorsque son accélération v'(t) est inférieure à 0.1 m.s^{-2} . Déterminer, à la seconde près, la plus petite valeur de t à partir de laquelle la vitesse du cycliste est stabilisée.
- 4. La distance d parcourue par ce cycliste entre les instants t_1 , et t_2 est donnée par $d = \int_{t_1}^{t_2} v(t) dt$.

Calculer la distance parcourue par ce cycliste pendant les 35 premières secondes.

Réunion Juin 2010(5 points)

On cherche à déterminer l'ensemble des fonctions f, définies et dérivables sur l'intervalle]0; $+\infty[$, vérifiant la condition (E):

pour tout nombre réel
$$x$$
 strictement positif, $xf'(x) - f(x) = x^2 e^{2x}$

- 1. Montrer que si une fonction f, définie et dérivable sur l'intervalle]0; $+\infty[$, vérifie la condition (E), alors la fonction g définie sur l'intervalle]0; $+\infty[$ par $g(x)=\frac{f(x)}{x}$ vérifie :
 - (E): pour tout nombre réel x strictement positif, $g'(x) = e^{2x}$.
- 2. En déduire l'ensemble des fonctions définies et dérivables sur l'intervalle $[0; +\infty[$ qui vérifient la condition .
- 3. Quelle est la fonction définie et dérivable sur l'intervalle]0; $+\infty[$ qui vérifie la condition (E) et qui s'annule en $\frac{1}{2}$?
- 4. On considère la fonction h définie sur l'intervalle $[0; +\infty[$ par

$$h(x) = \frac{1}{2}xe^{2x} - \frac{e}{2}x.$$

On désigne par $\mathcal C$ sa courbe représentative dans un repère orthonormal $(O;\overrightarrow{i},\overrightarrow{j})$.

- a. Déterminer, suivant les valeurs du nombre réel positif x, le signe de h(x).
- b. a. Calculer, à l'aide d'une intégration par parties, l'intégrale $\int_0^{\frac{1}{2}} x e^{2x} dx$ et en déduire $\int_0^{\frac{1}{2}} h(x) dx$.
 - b. En déduire, en unité d'aire, la valeur exacte de l'aire de la partie du plan située en dessous de l'axe des abscisses et au dessus de la courbe \mathcal{C} .