Chapitre 2: Limites et continuité

Limite à l'infini 1

A) Limite finie

Définition:

l désigne un réel. Dire qu'une fonction f a pour limite l en $+\infty$ signifie que tout intervalle ouvert contenant l contient toutes les valeurs f(x) pour x assez grand. On dit que f(x) tend vers l. On note : $\lim_{x \to +\infty} f(x) = l$

Remarque:

On définit de la même manière la notion de limite l en $-\infty$ que l'on note $\lim_{n \to \infty} f(x)$

Les fonctions $x \mapsto \frac{1}{x}$, $x \mapsto \frac{1}{x^2}$, $x \mapsto \frac{1}{x^n}$ où $n \in \mathbb{N}^*$ et $x \mapsto \frac{1}{\sqrt{x}}$ ont pour limite 0 en $-\infty$ et en $+\infty$.

Propriété:

Soit C la courbe représentative de la fonction f dans un repère du plan :

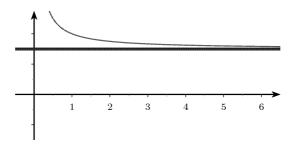
• $Si \lim_{x \to +\infty} f(x) = l$ alors la droite d'équation y = l est une asymptote horizontale à la courbe C en $+\infty$.

• $Si \lim_{x \to -\infty} f(x) = l$ alors la droite d'équation y = l est une asymptote horizontale à la courbe C en $-\infty$.

Exemple:

 $\frac{3x+1}{x} = 3 + \frac{1}{x}$ et $\lim_{x \to \infty} 3 + \frac{1}{x} = 3$ $Pou \ x \neq 0$,

donc la droite d'équation y=3 est une asymptote horizontale à la courbe $\mathcal C$ de la fonction $x\longmapsto \frac{3x+1}{x}$ en $-\infty$ et en $+\infty$



B) Limite infinie

Définition:

Dire qu'une fonction f a pour limite $+\infty$ en $+\infty$ signifie que tout intervalle $A: +\infty$ contient toutes les valeurs $A: +\infty$ contient toutes les valeurs $A: +\infty$ x assez grand. On dit que f(x) tend vers $+\infty$ en $+\infty$. On note : $\lim_{x\to +\infty} f(x) = +\infty$

On définit de la même manière la notion de limite $-\infty$ en $+\infty$, la notion de limite $+\infty$ en $-\infty$ et la notion de limite $-\infty$ $en-\infty$.

1

Exemples:

La fonction $x \longmapsto x^n$ où $n \in \mathbb{N}^*$ a pour limite :

• Si n est pair, $\lim_{x \to -\infty} x^n = +\infty$ et $\lim_{x \to +\infty} x^n = +\infty$.

• Si n est impair, $\lim_{x \to -\infty} x^n = -\infty$ et $\lim_{x \to +\infty} x^n = +\infty$

Propriété:

Soit C la courbe représentative de la fonction f dans un repère du plan; S'il existe deux réels a et b $(a \neq 0)$ tels que :

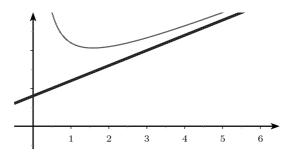
- $Si \lim_{x \to +\infty} f(x) (ax + b) = 0$ alors la droite d'équation y = ax + b est une asymptote oblique à la courbe $\mathcal C$ en $+\infty$.
- $Si \lim_{x \to -\infty} f(x) (ax + b) = 0$ alors la droite d'équation y = ax + b est une asymptote oblique à la courbe C en $-\infty$.

Exemple:

$$\frac{2x^2 + 4x + 5}{x} = 2x + 4 + \frac{5}{x}$$

$$\lim_{x \to \infty} f(x) - (2x+4) = 0$$

Exemple: Pou $x \neq 0$, $\frac{2x^2 + 4x + 5}{x} = 2x + 4 + \frac{5}{x} \qquad et \qquad \lim_{x \to \infty} f(x) - (2x + 4) = 0$ donc la droite d'équation y = 2x + 4 est une asymptote oblique à la courbe $\mathcal C$ de la fonction $x \mapsto \frac{2x^2 + 4x + 5}{x}$ en $-\infty$ et en $+\infty$



2 Limite en un réel a

Définition:

Dire qu'une fonction f tend vers un réel l en a, c'est dire que f(x) peut-être rendu aussi proche de l que l'on veut, à condition que x soit suffisamment proche de a. On note : $\lim f(x) = l$

Propriété:

- Si f admet une limite en a alors elle est unique.
- Si f est définie en a et admet une limite en a alors cette limite est égale à f(a).

Définition:

On dit que la limite de f en a est $+\infty$ si, lorsque x tend vers a, f(x) est aussi grand que l'on veut et on note :

$$\lim_{x \to a} f(x) = +\infty$$

Exemple:

Soit f la fonction inverse définie pour tout réel non-nul x par $f(x) = \frac{1}{x}$.

• Les réels f(x) sont dans l'intervalle $]100; +\infty[$ pour 0 < x < 0,01, on dit que f a pour limite $+\infty$ à droite en 0 et on note :

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty \qquad ou \qquad \lim_{x \to 0} \frac{1}{x} = +\infty$$

$$x > 0$$

• Les réels f(x) sont dans l'intervalle $]-\infty;-100[$ pour -0,01< x<0, on dit que f a pour limite $-\infty$ à gauche en 0 et on note:

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty \qquad ou \qquad \lim_{x \to 0} \frac{1}{x} = -\infty$$

$$x < 0$$

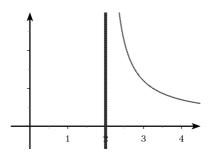
Définition:

Soit a un réel et C la courbe représentative de la fonction f dans un repère. Lorsque la limite (à droite ou à gauche) de f en $a \ est + \infty \ ou - \infty$, on dit que la droite d'équation $x = a \ est \ une$ asymptote verticale à la courbe \mathcal{C} .

Exemple:

Pour
$$x > 2$$
, $\lim_{x \to 2} x - 2 = 0^+$ et $\lim_{x \to 2} x + 3 = 5$ donc $\lim_{x \to 2} \frac{3+x}{x-2} = +\infty$

donc la droite d'équation x=2 est une asymptote verticale à la courbe $\mathcal C$ de la fonction $x\longmapsto \frac{3+x}{x-2}$.



3 Opérations sur les limites

A) Limite d'une somme

Théorème:

Dans le tableau suivant, l'et l'sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l	l	$+\infty$	$-\infty$	$+\infty$
et la limite de g en a est	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
alors la limite de $(f+g)$ en a est	l+l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	FI

FI signifie forme indéterminée, c'est à dire qu'on doit effectuer une étude particulière pour déterminer la limite de (f+g).

Exercice:

$$\lim_{x \to -\infty} x^2 = +\infty \quad et \quad \lim_{x \to -\infty} \frac{1}{x} = 0 \quad donc \quad \lim_{x \to -\infty} x^2 + \frac{1}{x} = +\infty$$

$$\lim_{x \to +\infty} -3x + 2 = -\infty \quad et \quad \lim_{x \to +\infty} -\sqrt{x} = -\infty \quad donc \quad \lim_{x \to +\infty} -3x + 2 - \sqrt{x} = -\infty$$

$$\lim_{x \to 0^+} \sqrt{x} = 0 \quad et \quad \lim_{x \to 0^+} \frac{1}{x} = +\infty \quad donc \quad \lim_{x \to 0^+} \sqrt{x} + \frac{1}{x} = +\infty$$

B) Limite d'un produit

Théorème:

Dans le tableau suivant, l'et l'sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
et la limite de g en a est	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	∞
alors la limite de $(f \times g)$ en a est	ll'	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	FI

Exercice:

$$\lim_{x\to +\infty} \sqrt{x} = +\infty \quad et \quad \lim_{x\to +\infty} -x^2 = -\infty \quad donc \quad \lim_{x\to +\infty} -x^2 \sqrt{x} = -\infty$$

$$\lim_{x\to -\infty} 2 + \frac{1}{x} = 2 \quad et \quad \lim_{x\to -\infty} 3 + \frac{1}{x} = 3 \quad donc \quad \lim_{x\to -\infty} (2 + \frac{1}{x})(3 + \frac{1}{x}) = 6$$

C) Limite d'un quotient

On distingue ici deux cas:

le dénominateur a une limite non-nul :

Théorème:

Dans le tableau suivant, l'et l' sont deux réels et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$_{-}^{+}\infty$
et la limite de g en a est	$l' \neq 0$	+∞	l' > 0	l' < 0	l' > 0	l' < 0	$^+\infty$
alors la limite de $\frac{f}{g}$ en a est	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Exercice:

$$\lim_{x\to +\infty} \sqrt{x} = +\infty \quad et \quad \lim_{x\to +\infty} -2 + \frac{1}{x} = -2 \quad donc \quad \lim_{x\to +\infty} \frac{\sqrt{x}}{-2 + \frac{1}{x}} = -\infty$$

le dénominateur a une limite nul :

Théorème:

Dans le tableau suivant, l'est un réel non-nul et a est soit un réel soit $-\infty$ ou soit $+\infty$.

Si la limite de f en a est	l > 0	l > 0	l < 0	l < 0	0
et la limite de g en a est	0+	0-	0+	0-	0
alors la limite de $\frac{f}{g}$ en a est	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Exercice:

$$\lim_{x \to 0^+} \sqrt{x} = 0^+ \quad et \quad \lim_{x \to 0^+} 2x + 7 = 7 \quad donc \quad \lim_{x \to +\infty} \frac{2x + 7}{\sqrt{x}} = +\infty$$

D) Limites à l'infini des fonctions polynômes

Théorème:

La limite d'une fonction polynôme en $+\infty$ (ou en $-\infty$) est celle de son monôme de plus haut degré.

Exercice:

Soit la fonction polynôme $f(x) = 5x^3 - 7x^2 + 3x - 8$, son monôme de plus haut degré est $5x^3$:

$$\lim_{x \to +\infty} 5x^3 = +\infty \quad donc \quad \lim_{x \to +\infty} f(x) = +\infty$$

E) Limites à l'infini des fonctions rationnelles

Théorème:

La limite d'une fonction rationnelle en $+\infty$ (ou en $-\infty$) est celle du quotient des monômes de plus haut degré.

Exercice:

Soit la fonction rationnelle $f(x) = \frac{5x^3 - 7x^2 + 3x - 8}{-6x^4 + 2}$, son monôme de plus haut degré au numérateur est $5x^3$ et son monôme de plus haut degré au dénominateur est $-6x^4$:

Pour
$$x \neq 0$$
, $\frac{5x^3}{-6x^2} = -\frac{5}{6x}$ et $\lim_{x \to +\infty} -\frac{5}{6x} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$

F) Formes indéterminées

D'après ce qui a été vu précédemment, on compte quatre formes indéterminés :

Dans ce cas, il faut faire une étude particulière pour "lever l'indétermination".

4 Limite d'une fonction composé

Définition:

La fonction f est appelée la composée de la fonction u suivie de la fonction v, si on a :

$$\underbrace{x \quad u \quad u(x) \quad v}_{f} \quad f(x) = v[u(x)]$$

On note $f = v \circ u$

Propriété:

a, b et c désignent soit un réel soit $+\infty$, soit $-\infty$. u, v et f désignent des fonctions telles que f est la composée de u suivie $\lim_{y \to b} v(y) = c, \quad alors \quad \lim_{x \to a} f(x) = c$ $\lim_{x \to a} u(x) = b$ de v. Si

Exemple:

Exemple: Soit
$$f$$
 la fonction définie $sur\]0; +\infty[$ $par\ f(x) = \sqrt{2+\frac{1}{x}}.$ On a $f(x) = v[u(x)]$ avec $u(x) = 2+\frac{1}{x}$ et $v(y) = \sqrt{y}.$ De $plus\ \lim_{x \to +\infty} u(x) = 2$ et $\lim_{y \to 2} v(y) = \sqrt{2},$ alors $\lim_{x \to +\infty} f(x) = \sqrt{2}$

5 Théorème de comparaison

Théorème: (Théorème des gendarmes)

Soit f, u et v trois fonctions définies au voisinages de $+\infty$. Si pour tout x dans un intervalle $|A; +\infty|$ on a :

$$u(x) \leqslant f(x) \leqslant v(x)$$

et si

$$\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} v(x) = l$$

alors

$$\lim_{x \to +\infty} f(x) = l$$

Démonstartion:

Soit I un intervalle ouvert contenant l.

 $\lim_{x\to +\infty} u(x) = l \ \ donc \ \ il \ \ existe \ un \ \ r\'eel \ M \ \ tel \ que \ pour \ tout \ x>M \ ; \ u(x)\in I.$

 $\lim_{x\to +\infty}v(x)=l\ \ donc\ \ il\ \ existe\ \ un\ \ r\acute{e}el\ M\ \ tel\ \ que\ \ pour\ \ tout\ \ x>M\ ;\ v(x)\in I.$

Si on note M" le plus grand de A, M et M' alors pour tout x > M"; $f(x) \in I$.

On en déduit donc que f converge vers l en $+\infty$.

Théorème:

Soit f et g deux fonctions définies au voisinage de $+\infty$.

Remarque:

On a des propriétés similaires dans le cas de limite en $-\infty$ et en un réel a.

6 Continuité

Définition:

Soit f une fonction définie sur un intervalle I contenant le réel a.

f est dite continue en a si et seulement si $\lim f(x) = f(a)$.

f est dite continue sur I si et seulement si elle est continue en tout réel de I.

Remarque:

Interprétation graphique

Dire que f est continue sur I signifie que l'on peut tracer la courbe représentative de f sur l'intervalle I sans avoir à lever le crayon.

Propriété:

- Les fonctions polynômes et les fonctions rationnelles sont continues sur tout intervalle contenu dans leur ensemble de définition.
- les fonction sin et cos sont continues sur \mathbb{R} .
- La fonction racine carrée est continue sur $[0; +\infty[$.
- Si u et v sont des fonctions continues sur un intervalle I, u + v, ku (k réel), uv le sont aussi; si l'on suppose de plus que v ne s'annule pas sur I, $\frac{1}{v}$ et $\frac{u}{v}$ sont continues sur I.

Exemple:

La fonction $x \mapsto x^2 + \cos(x)$ est continue sur \mathbb{R} comme somme de fonctions continues

7 Théorème des valeurs intermédiaires

Théorème:

Soit f une fonction continue sur un intervalle I contenant a et b avec a < b.

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c de [a;b] tel que f(c)=k.

Corollaire:

Si f est une fonction continue et strictement monotone sur [a;b], alors pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k a une solution unique dans [a;b].

Démonstartion:

L'existence de la solution est assurée par le théorème des valeurs intermédiaires.

Supposons qu'on ait deux solutions distinctes x_0 et x_1 .

D'une part $f(x_0) = k = f(x_1)$.

D'autre part comme $x_0 \neq x_1$ (par exemple $x_0 < x_1$) alors $f(x_0) \neq f(x_1)$ car f est strictement monotone.

C'est absurde donc on ne peut pas avoir deux solutions distinctes. Il n'existe donc qu'une unique solution à l'équation.

Remarque:

Il existe des extensions à ce corollaire dans le cas d'intervalles ouverts ou semi-ouvert à l'aide des limites. Voir les exemples dans les exercices