Exercices

Exercice 1:

Soit f la fonction définie par

$$f(x) = \frac{-2x^2 + 3x}{x - 1}$$

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Étudier les limites de f aux bornes de son ensemble de définition.
- 3. Que peut-on en déduire pour la courbe représentative de f?
- 4. a. Trouver les réels a, b et c tels que

$$f(x) = ax + b + \frac{c}{x - 1}.$$

- b. En déduire que la droite Δ d'équation y = -2x + 1 est asymptote oblique à la courbe C_f en $-\infty$ et $+\infty$.
- c. Étudier les positions relatives de C_f et Δ .
- 5. Dresser le tableau de variations de f.
- 6. Déterminer une équation de T, la tangente à \mathcal{C}_f en 2.
- 7. Tracer les asymptotes, T puis C_f .

Exercice 2:

On considère la fonction f définie sur \mathbb{R} par

$$f(x) = \frac{3x}{1+x^2}$$

- 1. Calculer les limites de f aux bornes de son ensemble de définition. Que peut-on en déduire pour la courbe représentative C_f de f?
- 2. Dresser le tableau de variations de la fonctions f
- 3. Déterminer l'équation de la tangente T à C_f au point d'abscisse 4.
- 4. Étudier les positions relatives de C_f et T.

Exercice 3:

On définit sur $[0;\pi]$ les fonctions $f,\,g$ et h par :

$$f(x) = x - \sin x$$
 ; $g(x) = -1 + \frac{x^2}{2} + \cos x$; $h(x) = -x + \frac{x^3}{6} + \sin x$.

- 1. Étudier le sens de variation de f et en déduire son signe.
- 2. Reprendre la question 1. pour la fonction g, puis pour la fonction h.
- 3. En déduire que, pour tout $x \in [0; \pi]$,

$$x - \frac{x^3}{6} \le \sin x \le x$$

Exercice 4:

Dans le plan rapporté à un repère orthonormée, soit \mathcal{C}_f la courbe représentative de la fonction f définie sur \mathbb{R} par

$$f(x) = 2x^3 + x^2 + \frac{3}{2}x + 1$$

- 1. Calculer les limites de la fonction f en $+\infty$ et en $-\infty$.
- 2. Étudier les variations de la fonction f sur \mathbb{R} .
- 3. Déterminer une équation de la tangente T à la courbe C_f en son point d'abscisse $-\frac{1}{2}$.
- 4. Démontrer qu'il existe exactement une autre tangente à la courbe C_f qui est parallèle à la droite T. En déterminer une équation.