Intégrales et primitives

Exercice 1:

On considère une fonction f continue et croissante sur I. On va démontrer que :

$$F(x) = \int_{a}^{x} f(t) dt$$

est l'unique primitive de f sur I s'annulant en a.

Pour montrer que F est une primitive de f, on va montrer que F est dérivable en x_0 et que $F'(x_0) = f(x_0)$ pour tout réel $x_0 \in I$.

1. Pour tout réel $h \neq 0$, déterminer

$$\frac{F(x_0+h)-F(x_0)}{h}$$

2. Pour h > 0, démontrer que :

$$f(x_0) \leq \frac{1}{h} \int_{x_0}^{x_0+h} f(t) \mathrm{d}t \leq f(x_0+h).$$

3. Pour h < 0, démontrer que :

$$f(x_0 + h) \le \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt \le f(x_0).$$

4. En déduire que :

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

5. Conclure.

Exercice 2:

Montrer que si f une fonction continue sur un intervalle I contenant a et b,

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

où F est une primitive quelconque de f.

Exercice 3:

Calculer les intégrales suivantes :

a.
$$\int_{0}^{2} 2x^{3} dx$$
 e. $\int_{1}^{e} \frac{3}{x} dx$ i. $\int_{0}^{\pi} \cos(t) dt$ b. $\int_{1}^{2} \frac{1}{x} dx$ f. $\int_{0}^{2} e^{x} - 3 dx$ j. $\int_{-\pi}^{\pi} \sin(\theta) d\theta$ c. $\int_{-1}^{2} x^{2} + 6x - 4 dx$ g. $\int_{-4}^{5} e^{-x} dx$ k. $\int_{0}^{1} e^{2x} dx$ d. $\int_{1}^{2} \frac{5}{2\sqrt{x}} dx$ h. $\int_{1}^{3} \frac{2x}{(x^{2} + 1)^{2}} dx$ l. $\int_{1}^{2} 1 - \frac{1}{x^{2}} dx$

Exercice 4:

Calculer les intégrales suivantes :

a.
$$\int_{0}^{2} \frac{3x}{(x^{2}+2)^{2}} dx$$
 e. $\int_{0}^{e} \frac{-2}{x+1} dx$ i. $\int_{0}^{\pi} \cos(2t) dt$ b. $\int_{1}^{2} \frac{1}{3x+2} dx$ f. $\int_{0}^{1} 4e^{2x-3} dx$ j. $\int_{e}^{e^{2}} \frac{\ln(t)}{t} dt$ c. $\int_{-\pi}^{\pi} \cos(3t+\pi) dt$ g. $\int_{-2}^{-1} \frac{x-1}{x} dx$ k. $\int_{0}^{4} \frac{5}{\sqrt{x+5}} dx$ d. $\int_{0}^{\frac{\pi}{4}} \sin(3t) dt$ h. $\int_{0}^{\frac{\pi}{4}} \sin(\theta) \cos(\theta) d\theta$ l. $\int_{0}^{1} xe^{-x^{2}} dx$

Exercice 5:

Déterminer l'aire, en unités d'aire, comprise entre la courbe d'équation $y = -x^2 + 3x + 4$, l'axe des abscisses et les droites d'équation x = 1 et x = 4.

On commencera par tracer la courbe dans un repère d'unité 1 cm et hachurer l'aire que l'on veut calculer.

Exercice 6:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2 - e^{-\frac{1}{2}x}$.

On note \mathcal{C} sa courbe représentative dans un repère orthonormé, l'unité graphique est 2 cm.

- 1. Dresser le tableau de signes de f sur \mathbb{R} .
- 2. On note \mathcal{A} l'aire en cm² du domaine \mathcal{D} limité par \mathcal{C} , l'axe des abscisses et les droites d'équation x = 0 et $x = \ln(2)$. Calculer \mathcal{A} .