DEVOIR BILAN 3		
Enseignant : GREAU D.	Nom:	Note:
Classe: TS2	Prénom :	
Date : 18/11/2011		

Exercice 1: 3 points

Prérequis : La fonction sin est dérivable sur \mathbb{R} et sa dérivée est la fonction cos.

- 1. En utilisant la définition de nombre dérivé, montrer que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.
- 2. Que peut-on en déduire sur la continuité de la fonction $g: x \mapsto \begin{cases} \frac{\sin(x)}{x} & \text{si} \quad x \neq 0 \\ 2 & \text{si} \quad x = 0 \end{cases}$?

Exercice 2: 6 points

Pour tout complexe z, on considère $f(z) = z^4 - 3z^3 + 21z^2 - 48z + 80$.

- 1. a. Montrer que 4i est solution de f(z) = 0.
 - b. Montrer que $f(\overline{z}) = \overline{f(z)}$.
 - c. Montrer que si α est un nombre complexe tel que $f(\alpha) = 0$ alors $f(\overline{\alpha}) = 0$.
 - d. En déduire que l'équation f(z) = 0 admet deux nombres imaginaires purs comme solution.
- 2. Déterminer les nombres réels a et b tels que pour tout z de \mathbb{C} , $f(z)=(z^2+16)(z^2+az+b)$.
- 3. Résoudre f(z) = 0 dans \mathbb{C} .

Exercice 3: 2 points

1. Déterminer la limite suivante :

$$\lim_{x \to -\infty} x e^x$$

2. En déduire la limite suivante :

$$\lim_{x\to 1^-}\frac{x+1}{x-1}exp\left(\frac{x+1}{x-1}\right)$$

Exercice 4: 9 points

Soit f la fonction définie sur \mathbb{R} par $f(x) = 5 + x - e^x$. On note \mathcal{C} la courbe représentative de la fonction f dans un repère orthonormal $(0; \overrightarrow{i}, \overrightarrow{j})$. L'unité graphique est 1 cm.

- 1. Limites de la fonction f:
 - a. Déterminer la limite de la fonction f quand x tend vers $-\infty$.
 - b. Montrer que pour tout réel $x \neq 0$, $f(x) = x\left(\frac{5}{x} + 1 \frac{e^x}{x}\right)$
 - c. En déduire la limite de la fonction f quand x tend vers $+\infty$.
- 2. Étude des variations de la fonction f:
 - a. Déterminer la fonction dérivée de f.
 - b. Résoudre $1 e^x > 0$. En déduire le signe de f'(x) sur \mathbb{R} .
 - c. En déduire le tableau de variation de f sur \mathbb{R} .
- 3. Résolution de f(x) = 0:
 - a. Démontrer que l'équation f(x) = 0 a une unique solution notée α appartenant à l'intervalle $[0; +\infty]$ et une unique solution notée β appartenant à l'intervalle $[-\infty; 0]$.
 - b. Donner les valeurs approchées de α et β arrondies au centième.
- 4. Tracer la courbe \mathcal{C} dans le repère orthonormal $(0; \overrightarrow{i}, \overrightarrow{j})$ pou $x \in [-6; 2]$.