Étude des fonctions trigonométriques

1 Fonction cosinus

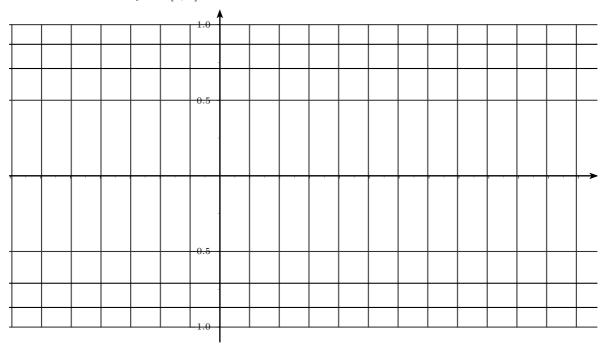
Soit f la fonction définie sur \mathbb{R} par f(x) = cos(x).

- 1. Montrer que pour tout réel x, f(-x) = f(x). Que peut-on en déduire pour la courbe de la fonction f?
- 2. Montrer que pour tout réel x, $f(x) = f(x + 2\pi)$. Que peut-on en déduire pour la courbe de la fonction f?
- 3. Étudier le signe de f sur $[-\pi; \pi]$.
- 4. Étudier les variations de f sur $[-\pi; \pi]$.
- 5. Compléter le tableau ci-dessous :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos(x)						

6. Tracer la courbe de la fonction f sur $[0; \pi]$.

7. En déduire le tracé de la courbe de la fonction f sur $[-\pi; 0]$ et sur $[\pi; 3\pi]$.


2 Fonction sinus

Soit f la fonction définie sur \mathbb{R} par f(x) = sin(x).

- 1. Montrer que pour tout réel x, f(-x) = -f(x). Que peut-on en déduire pour la courbe de la fonction f?
- 2. Montrer que pour tout réel x, $f(x)=f(x+2\pi)$. Que peut-on en déduire pour la courbe de la fonction f?
- 3. Étudier le signe de f sur $[-\pi; \pi]$.
- 4. Étudier les variations de f sur $[-\pi; \pi]$.
- 5. Compléter le tableau ci-dessous :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin(x)						

6. Tracer la courbe de la fonction f sur $[0; \pi]$.

7. En déduire le tracé de la courbe de la fonction f sur $[-\pi;0]$ et sur $[\pi;3\pi]$.