Introduction à la loi normale standard

Définition:

Une variable aléatoire X suit la loi normale $\mathcal{N}(\mu; \sigma^2)$ si la variable aléatoire $\frac{X - \mu}{\sigma}$ suit la loi normale centrée réduite $\mathcal{N}(0; 1)$ où σ est un réel strictement positif.

Exercice 1:

Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(\mu; \sigma^2)$. On rappelle que pour une variable aléatoire Y admettant une espérance et une variance, on a : E(aY + b) = aE(Y) + b et $V(Y) = E(Y^2) - E(Y)^2$. On pose à présent $Z = \frac{X - \mu}{\sigma}$

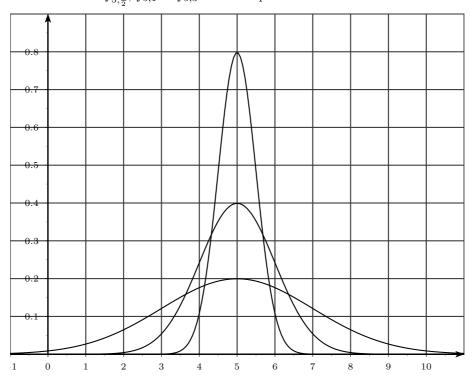
- 1. Déterminer l'espérance de E(Z). En déduire E(X).
- 2. Montrer que $V(Z) = E(Z^2)$ puis exprimer X en fonction de Z. En déduire V(X).

Exercice 2:

Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(\mu; \sigma^2)$. Sa densité est donnée par :

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

1. On a tracer les courbes des fonctions $f_{5,\frac{1}{2}},\,f_{5,1}$ et $f_{5,3}$ dans le repère ci-dessous :



Identifier pour chaque fonction sa courbe représentative.

2. Donner des propriétés de la courbe de $f_{\mu,\sigma}$ en fonction de μ et σ .

Exercice 3:

Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(\mu; \sigma^2)$. Déterminer :

- 1. $P(X \in [\mu \sigma; \mu + \sigma])$
- 2. $P(X \in [\mu 2\sigma; \mu + 3\sigma])$
- 3. $P(X \in [\mu 3\sigma; \mu + 3\sigma])$