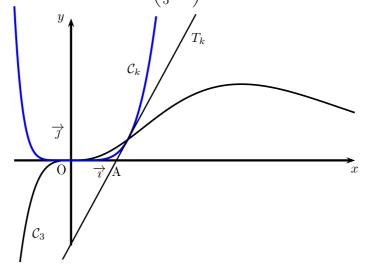
Exercices type bac 2011...suite

Métropole Juin 2011 (5 points)

Pour tout entier naturel n supérieur ou égal à 1, on désigne par f_n la fonction définie sur $\mathbb R$ par :

$$f_n(x) = x^n e^{-x}$$
.

On note C_n sa courbe représentative dans un repère orthogonal $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ du plan. Sur le graphique ci-dessous, on a représenté une courbe C_k où k est un entier naturel non nul, sa tangente T_k au point d'abscisse 1 et la courbe C_3 . La droite T_k coupe l'axe des abscisses au point A de coordonnées $\left(\frac{4}{5}; 0\right)$.



- 1. a. Déterminer les limites de la fonction f_1 en $-\infty$ et en $+\infty$.
 - b. Étudier les variations de la fonction f_1 et dresser le tableau de variations de f_1 .
 - c. À l'aide du graphique, justifier que k est un entier supérieur ou égal à 2.
- 2. a. Démontrer que pour $n \geqslant 1$, toutes les courbes C_n passent par le point O et un autre point dont on donnera les coordonnées.
 - b. Vérifier que pour tout entier naturel n supérieur ou égal à 2, et pour tout réel x,

$$f'_n(x) = x^{n-1}(n-x)e^{-x}$$

- 3. Sur le graphique, la fonction f_3 semble admettre un maximum atteint pour x=3. Valider cette conjecture à l'aide d'une démonstration.
- 4. a. Démontrer que la droite T_k coupe l'axe des abscisses au point de coordonnées $\left(\frac{k-2}{k-1}; 0\right)$.
 - b. En déduire, à l'aide des données de l'énoncé, la valeur de l'entier k.

Antilles Juin 2011 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^x - 1$

- 1. Déterminer la limite de la fonction f en $-\infty$ et en en $+\infty$.
- 2. Étudier le sens de variation de f.
- 3. Démontrer que l'équation f(x) = 0 admet une unique solution α sur l'intervalle \mathbb{R} . Déterminer une valeur approchée de α à 10^{-2} près.
- 4. Déterminer le signe de f(x) suivant les valeurs de x.

Nouvelle Calédonie Mars 2012 (3 points)

Soit g la fonction définie sur $[0; +\infty[$ par

$$q(x) = x(e^x - e) + e - 2.$$

- 1. Soit g' la fonction dérivée de la fonction g. Calculer g'(x) pour tout réel x de $[0; +\infty[$. Vérifier que la fonction dérivée seconde g'' est définie sur $[0; +\infty[$ par $g''(x) = (2+x)e^x$.
- 2. En déduire les variations de la fonction g' sur $[0; +\infty[$.
- 3. Établir que l'équation g'(x) = 0 admet une solution unique α dans l'intervalle $[0; +\infty[$. Déterminer une valeur approchée de α à 10^{-1} près.
- 4. En déduire les variations de la fonction q sur $[0; +\infty[$.