Devoir maison 5

Exercice 1: 10 points

Soit f_k la fonction définie par $f_k(x) = (x^2 + x + k)e^{kx}$.

1. Étude de f_0 :

Étudier les variations et le signe de f_0 .

- 2. Étude de f_1 :
 - a. Étudier les variations de f_1 .
 - b. Étudier le signe de f_1 .
 - c. Étudier les limites de f_1 en $-\infty$ et $+\infty$.
- 3. Étude de général pour $k \in \mathbb{R}$:
 - a. Déterminer le signe de la fonction $g: x \longmapsto -4x^3 + x^2 + 4$ sur \mathbb{R} .
 - b. Montrer que f'_k est du signe $kx^2 + (2+k)x + 1 + k^2$ sur \mathbb{R} .
 - c. Déterminer les variations de f_k selon les valeurs prises par k.
 - d. Étudier le signe de f_k selon les valeurs prises par k.

Exercice 2: 10 points

Le plan complexe est rapporté au repère orthonormal direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

On désigne par A, B, C, D les points d'affixes respectives $z_A = 3 + 4i$, $z_B = 7 + 2i$, $z_C = 5 + 2\sqrt{3} + (3 + 2\sqrt{3})i$ et $z_D = 1$

- 1. Montrer que : $\frac{z_C z_A}{z_B z_A} = e^{i\frac{\pi}{3}}$
- 2. En déduire la nature du triangle ABC.
- 3. Placer les points A, B, C et D dans un repère en expliquant brièvement une méthode pour placer le point C.
- 4. Montrer que : $z_B z_A = i(z_D z_A)$
- 5. En déduire la nature du triangle DAB.
- 6. Soit E le point d'affixe 5-5i...
 - a. Déterminer une écriture sous forme trigonométrique puis sous forme exponentielle du complexe 5-5i.
 - b. Déterminer l'ensemble \mathcal{E} des points M(z) tels que $|z-5+5i|=\sqrt{85}$
 - c. Montrer que $A \in \mathcal{E}$
- 7. a. Déterminer l'ensemble \mathcal{F} des points M(z) tels que $|\overline{z}-7+2\mathrm{i}|=|\overline{z}-1|$
 - b. Montrer que $A \in \mathcal{F}$