Probabilités et suites

Exercice 1:

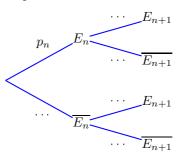
Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent
- La première semaine de travail, le salarié n'est pas malade.
- Si la semaine n le salarié n'est pas malade, il tombe malade la semaine n+1 avec une probabilité égale à 0,04.
- Si la semaine n le salarié est malade, il reste malade la semaine n+1 avec une probabilité égale à 0,24.

On désigne, pour tout entier naturel n supérieur ou égal à 1, par E_n l'évènement « le salarié est absent pour cause de maladie la n-ième semaine ». On note p_n la probabilité de l'évènement E_n .

On a ainsi : $p_1 = 0$ et, pour tout entier naturel n supérieur ou égal à $1: 0 \le p_n < 1$.

- 1. (a) Déterminer la valeur de p_3 à l'aide d'un arbre de probabilité.
 - (b) Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2. (a) Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous



- (b) Montrer que, pour tout entier naturel n supérieur ou égal à 1, $p_{n+1} = 0, 2p_n + 0, 04$.
- (c) Montrer que la suite (u_n) définie pour tout entier naturel n supérieur ou égal à 1 par $u_n = p_n 0,05$ est une suite géométrique dont on donnera le premier terme et la raison r. En déduire l'expression de u_n puis de p_n en fonction de n et r.
- (d) En déduire la limite de la suite (p_n) .
- (e) On admet dans cette question que la suite (p_n) est croissante. On considère l'algorithme suivant :

Variables	K et J sont des entiers naturels, P est un nombre réel
Initialisation	P prend la valeur 0
	J prend la valeur 1
Entrée	Saisir la valeur de K
Traitement	Tant que $P < 0.05 - 10^{-K}$
	P prend la valeur $0, 2 \times P + 0, 04$
	J prend la valeur J $+1$
	Fin tant que
Sortie	Afficher J

A quoi correspond l'affichage final J?

Pourquoi est-on sûr que cet algorithme s'arrête?

3. Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p = 0.05.

On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues.

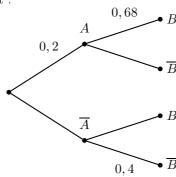
On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.

- (a) Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l'espérance mathématique μ et l'écart type σ de la variable aléatoire X.
- (b) autre question sur la loi normale (à voir en fin d'année)

Exercice 2:

Pour chaque question une affirmation est proposée ou plusieurs réponses sont proposées. Indiquer si elle est vraie ou fausse, ou indiquer quelle réponse est correcte en justifiant la réponse. Une réponse non justifiée ne sera pas prise en compte. Toute trace de recherche sera valorisée.

1. On considère l'arbre de probabilités suivant :



Affirmation: la probabilité de l'évènement A sachant que l'évènement B est réalisé est égale à 0,32.

2. Un magasin de matériel informatique vend deux modèles d'ordinateur au même prix et de marques M_1 et M_2 . Les deux ordinateurs ont les mêmes caractéristiques et sont proposés en deux couleurs : noir et blanc.

D'après une étude sur les ventes de ces deux modèles, 70 % des acheteurs ont choisi l'ordinateur M₁ et, parmi eux, 60 % ont préféré la couleur noire. Par ailleurs, 20 % des clients ayant acheté un ordinateur M₂ l'ont choisi de couleur blanche. On utilise la liste des clients ayant acheté l'un ou l'autre des ordinateurs précédemment cités et on choisit un client au hasard.

(a) La probabilité qu'un client choisi au hasard ait acheté un ordinateur M_2 de couleur noire est :

Réponse A :
$$\frac{3}{5}$$

Réponse B :
$$\frac{4}{5}$$

Réponse B :
$$\frac{4}{5}$$
 Réponse C : $\frac{3}{50}$ Réponse D : $\frac{6}{25}$

Réponse D :
$$\frac{6}{25}$$

(b) La probabilité qu'un client choisi au hasard ait acheté un ordinateur de couleur noire est :

Réponse A :
$$\frac{21}{50}$$

Réponse B :
$$\frac{33}{50}$$

Réponse C :
$$\frac{3}{5}$$

Réponse B :
$$\frac{33}{50}$$
 Réponse C : $\frac{3}{5}$ Réponse D : $\frac{12}{25}$

(c) Le client a choisi un ordinateur de couleur noire. La probabilité qu'il soit de marque M_2 est :

Réponse A :
$$\frac{4}{11}$$

Réponse B :
$$\frac{6}{25}$$

Réponse C :
$$\frac{7}{11}$$

Réponse B :
$$\frac{6}{25}$$
 Réponse C : $\frac{7}{11}$ Réponse D : $\frac{33}{50}$

3. Une urne contient 4 boules jaunes, 2 boules rouges et 3 boules bleues.

Les boules sont indiscernables au toucher.

L'expérience consiste à tirer au hasard et simultanément 3 boules de l'urne.

(a) La probabilité d'obtenir trois boules de même couleur est :

Réponse A :
$$\frac{11}{81}$$

Réponse B :
$$\frac{2}{7}$$

Réponse C :
$$\frac{5}{84}$$

Réponse D :
$$\frac{4}{63}$$

(b) La probabilité d'obtenir trois boules de trois couleurs différentes est :

Réponse A :
$$\frac{2}{7}$$

Réponse B :
$$\frac{1}{5}$$

Réponse C :
$$\frac{1}{21}$$

Réponse A :
$$\frac{2}{7}$$
 Réponse B : $\frac{1}{7}$ Réponse C : $\frac{1}{21}$ Réponse D : $\frac{79}{84}$