Chapitre 10: Intégration

1 Primitive

1.1 Définition

Définition:

Soit f une fonction définie sur un intervalle I. Une primitive de f sur I est une fonction F dérivable sur I et telle que pour tout x de I,

$$F'(x) = f(x)$$

Si elle existe, on note usuellement F la primitive d'une fonction f.

Exemple:

 $(2x^2)' = 4x$ donc la fonction $F: x \mapsto 2x^2$ est une primitive sur \mathbb{R} de la fonction $f: x \mapsto 4x$

Théorème:

f est une fonction qui admet une primitive F sur un intervalle I.

- La fonction G définie sur I par G(x) = F(x) + k, où k est un réel est aussi une primitive de f sur I.
- Toute primitive de f sur I est de la forme F + k.
- $x_0 \in I$ et y_0 un nombre réel. Il existe une unique primitive F de f sur I tel que $F(x_0) = y_0$.

1.2 Primitives de fonctions usuelles

Propriété:

Dans le tableau ci-dessous figure la primitive la plus usuelle c'est à dire sans constante.

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	$sur\ I=\dots$
x^n où $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{x^{n+1}}{n+1}$	$\left\{\begin{array}{ll} \mathbb{R} & pour & n \ge 0 \\]-\infty; 0[ou]0; +\infty[& pour & n \le -2 \end{array}\right.$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0;+\infty[$
$\frac{1}{x}$	$\ln x$	$]0;+\infty[$
$\cos x$	$\sin x$	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}

1.3 Primitives et opérations sur les fonctions

Propriété:

- F et G sont des primitives respectives des fonctions f et g sur I alors F+G est une primitive de f+g sur I.
- F est une primitive de la fonction f sur I et k est un nombre réel alors $k \cdot F$ est une primitive de $k \cdot f$ sur I.

Propriété:

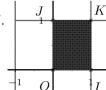
Dans le tableau ci-dessous u désigne une fonction dérivable sur I.

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	Conditions
$\frac{u'}{u^2}$	$-\frac{1}{u}$	$u(x) \neq 0$ pour tout x de I
$u' \cdot u^n \ où \ n \in \mathbb{Z} \backslash \{-1\}$	$\frac{u^{n+1}}{n+1}$	$pour \ n \leq -2, \ u(x) \neq 0 \ pour \ tout \ x \ de \ I$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u(x) > 0 pour tout x de I
$\frac{u'}{u}$	$\ln u$	u(x) > 0 pour tout x de I
$u'e^u$	e^u	aucune

2 Intégration

Notion d'intégrale

Dans un repère orthogonal $(O;\overrightarrow{OI},\overrightarrow{OJ})$, l'unité d'aire (U.A) est l'aire du rectangle OIKJ. Dans la suite:

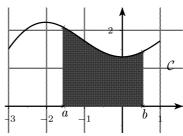


- toutes les courbes sont représentées dans un repère orthogonal;
- toutes les aires sont données dans l'unité d'aire associée au repère.

Définition:

Soit f une fonction continue et positive sur un intervalle [a; b] et C sa courbe représentative.

L'intégrale de a à b de la fonction f, notée $\int_{-\infty}^{\infty} f(x) dx$ est l'aire (en unités d'aires) du domaine situé sous la courbe \mathcal{C} .



 $\int_{0}^{b} f(x) dx \text{ se lit } \text{``intégrale de a `a` b' de } f(x) dx' \text{``}.$

Remarque: La variable x n'a pas d'importance, on a $\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(q) dq$.

Soit f une fonction continue et positive sur un intervalle [a; b] alors $\int_{a}^{b} f(x) dx \ge 0$.

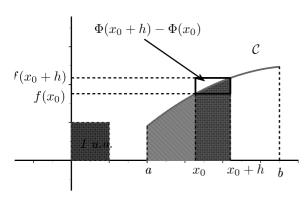
Intégrale d'une fonction continue et conséquences

Théorème:

Soit f une fonction continue et positive sur un intervalle [a;b] alors la fonction $\Phi: x \longmapsto \int_{-\infty}^{x} f(t) dt$ est dérivable sur [a;b] et $\Phi' = f$

Démonstration: (R.O.C.)

On se place dans le cas où f est croissante sur [a;b]. Soit x_0 et h deux nombres tels que $x_0 \in [a,b]$, $x_0 + h \in [a;b]$ et $h \neq 0$.



• Si h > 0, comme f est croissante, $f(x_0) \leq f(x_0 + h)$. De plus, $\Phi(x_0+h)-\Phi(x_0)$ exprime l'aire sous \mathcal{C} sur $[x_0;x_0+h]$ donc l'aire sous la courbe est encadrée par l'aire des rectangles de largeur h et de hauteur $f(x_0)$ et $f(x_0 + h)$ d'où :

$$h \times f(x_0) \le \Phi(x_0 + h) - \Phi(x_0) \le h \times f(x_0 + h)$$

et comme h est non-nul et positif, on obtient : $f(x_0) \le \frac{\Phi(x_0+h)-\Phi(x_0)}{h} \le f(x_0+h)$

$$\lim_{h \to 0} \frac{\Phi(x_0 + h) - \Phi(x_0)}{h} = f(x_0)$$

Ainsi Φ est dérivable en x_0 et $\Phi'(x_0) = f(x_0)$ pour tout réel x_0 de [a;b] donc Φ est dérivable sur [a;b] et $\Phi' = f$

Corollaire:

Soit f une fonction continue et positive sur un intervalle [a;b] alors la fonction f admet une primitive Φ sur [a;b] définie $par \ \Phi: x \longmapsto \int_{-\infty}^{x} f(t) dt.$

Théorème:

Toute fonction continue sur un intervalle |a;b| admet des primitives sur |a;b|.

Démonstration: (R.O.C.)

On admet que toute fonction continue sur un intervalle |a;b| admet un minimum m et un maximum M.

Soit donc f une fonction continue sur [a; b]. Il existe $m \in \mathbb{R}$ tel que $f(x) \geq m$ sur [a; b] donc la fonction h(x) = f(x) - m est une fonction continue et positive sur [a;b].

D'après le théorème précédent, h admet une primitive Φ sur [a;b], avec $\Phi'(x) = h(x)$.

Posons donc $F(x) = \Phi(x) + mx$.

F est dérivable sur [a;b] et $F'(x) = \Phi'(x) + m = f(x) - m + m = f(x)$ donc F est une primitive de f sur [a;b]

Remarque:

On admettra que ce résultat peut s'étend pour un intervalle quelconque I.

Théorème: (fondamental)

Soit f une fonction continue et positive sur un intervalle [a; b] alors

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

où F est une primitive quelconque de f.

Démonstration:

f une fonction continue et positive sur un intervalle [a;b] donc $x \mapsto \int_{a}^{x} f(t)dt$ est aussi une primitive de f sur [a;b]donc il existe $k \in \mathbb{R}$ tel que $F(x) = \int_a^x f(t) dt + k \ sur \ [a;b]$. De plus $F(a) = \int_a^a f(t) dt + k = k \ donc \ k = F(a) \ donc$ $F(b) = \int_{-b}^{b} f(t)dt + F(a) \text{ soit } F(b) - F(a) = \int_{-b}^{b} f(t)dt$

Extension de la notion d'intégrale

On a défini l'intégrale d'une fonction f continue et positive sur un intervalle [a;b] et on démontré que si F est une primitive de f sur [a;b] alors $\int_a^b f(x) dx = F(b) - F(a)$. On admet dans la suite du chapitre que cette formule s'étend au cas d'une fonction continue de signe quelconque sur |a;b| et on pose la définition suivante :

Définition:

f est une fonction continue sur un intervalle I, F est une primitive de f sur I, a et b sont deux nombres quelconques de I. L'intégrale de la fonction f entre a et b est le nombre $\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$.

Remarque:

 $On\ note$

$$\int_{a}^{b} f(x) \mathrm{d}x = [F(x)]_{a}^{b}$$

 $x \longmapsto 6x^2$ est une fonction continue sur [-3;4] donc $\int_{-3}^4 6x^2 dx = [2x^3]_{-3}^4 = 128 - (-54) = 182$

Propriété:

Soit f une fonction continue sur [a;b] alors $\int_a^a f(x) dx = F(a) - F(a) = 0$ et $\int_b^a f(x) dx = F(a) - F(b) = -\int_a^b f(x) dx$.

2.4 Linéarité de l'intégration

Théorème:

Soit f et g deux fonctions continues sur [a;b] et λ un nombre réel :

•
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

Démonstration:

 $En\ exercice...$

Corollaire: Pour a < b, si $f \le g$ sur [a;b] alors $\int_a^b f(x) \mathrm{d}x \le \int_a^b g(x) \mathrm{d}x$

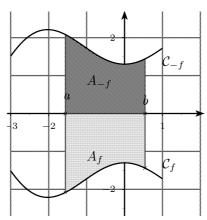
 $\begin{array}{l} \textbf{D\'{e}monstration:} \\ \textit{Consid\'{e}rons} \ f-g \geq 0 \ \textit{par hypoth\`{e}se donc} \ \int_a^b (f(x)-g(x)) \mathrm{d}x \geq 0 \\ \Leftrightarrow \int_a^b f(x) \mathrm{d}x - \int_a^b g(x) \mathrm{d}x \geq 0 \\ \Leftrightarrow \int_a^b f(x) \mathrm{d}x \geq \int_a^b g(x) \mathrm{d}x \\ \end{cases}$

Remarque:

Attention, la réciproque est fausse.

Propriété:

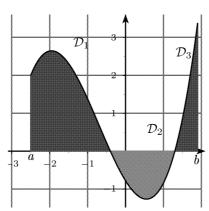
Soit f une fonction continue et négative sur [a;b] alors $\int_a^b f(x) dx$ est l'opposé de l'aire (en unités d'aires) du domaine situé sous la courbe C.



$$En\ \textit{effet},\ -f\ \textit{est positive donc}\ \int_a^b -f(x)\mathrm{d}x = A_{-f} = A_f\ \textit{et}\ \int_a^b -f(x)\mathrm{d}x = -\int_a^b f(x)\mathrm{d}x\ \textit{donc}\ \int_a^b f(x)\mathrm{d}x = -A_f$$

Propriété:

Soit f une fonction définie et continue sur un intervalle [a;b] (de signe quelconque) et $\mathcal C$ sa courbe représentative. $\int_{0}^{\infty} f(x) dx$ est la somme des aires « algébriques » des domaines entre C et l'axe des abscisses.



Par exemple, sur la figure ci-dessus :

$$\int_{0}^{b} f(x) \mathrm{d}x = \mathcal{A}_{\mathcal{D}_{1}} - \mathcal{A}_{\mathcal{D}_{2}} + \mathcal{A}_{\mathcal{D}_{3}}$$

Propriété:

Soit f et g deux fonctions continues sur [a;b] tel que $g(x) \leq f(x)$ sur [a;b] alors l'aire du domaine $\mathcal D$ délimité par $\mathcal C_f$ et $\mathcal C_g$ sur[a;b] est définie par $\int_a^b [f(x)-g(x)] dx$.

2.5 Relation de Chasles

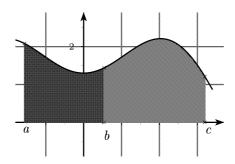
Propriété: (Relation de Chasles)

Soit f une fonction continue sur I et a, b, c trois réels de I alors

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

Remarque:

Dans le cas où f est positive sur I et $a \le b \le c$, cette propriété est illustrée par le graphique ci-dessous :



Cependant la relation de Chasles est vraie quels que soient l'ordre des réels a, b, c et le signe de f.

2.6 Valeur moyenne et inégalité de la moyenne

Définition: (Valeur movenne)

Soit f une fonction continue sur [a;b]. La valeur moyenne de la fonction f sur [a;b] est le nombre μ défini par :

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$$

Théorème: (Inégalité de la moyenne)

Soit f une fonction continue sur [a;b] et soit m et M deux réels tels que $m \leq f(x) \leq M$ pour $x \in [a;b]$. On a alors

$$m(b-a) \le \int_a^b f(x) \mathrm{d}x \le M(b-a)$$

3 Intégration par parties

Propriété:

Soit u et v deux fonctions dérivables telles que u' et v' soit continues sur un intervalle [a;b].

$$On \ a \ \int_a^b u'(x) v(x) \mathrm{d} x = \left[u(x) v(x) \right]_a^b - \int_a^b u(x) v'(x) \mathrm{d} x.$$

Exemple:
$$Calculons \int_{1}^{2} x^{2} \ln(x) dx$$
.

Pour cela posons

$$u(x) = ln(x)$$
 $u'(x) = \frac{1}{x}$
 $v'(x) = x^2$ $v(x) = \frac{1}{3}x^3$.

 $Comme\ u'\ et\ v'\ sont\ continues\ sur\ [1;2],\ on\ peut\ utiliser\ la\ formule\ d'intégration\ par\ parties,\ on\ obtient\ alors\ :$

$$\begin{split} \int_{1}^{2} x^{2} \ln(x) \mathrm{d}x &= \left[\frac{1}{3} x^{3} \ln(x) \right]_{1}^{2} - \int_{1}^{2} \frac{x^{2}}{3} \mathrm{d}x \\ &= \left[\frac{8}{3} \ln(2) - 0 \right] - \left[\frac{x^{3}}{9} \right]_{1}^{2} \\ &= \frac{8}{3} \ln(2) - \left(\frac{8}{9} - \frac{1}{9} \right) \\ &= \frac{8}{3} \ln(2) - \frac{7}{9} \end{split}$$