Restitution Organisée de Connaissance (R.O.C.)

16/09/2013

R.O.C. 1:

Soit (u_n) et (v_n) deux suites telles que :

- à partir d'un certain rang, $u_n \leq v_n$;
- $\lim_{n\to+\infty}u_n=+\infty$;

alors $\lim_{n \to +\infty} v_n = +\infty$

Démonstration:

- Il existe un entier n_0 tel que pour tout entier $n, n \ge n_0$, on $a: u_n \le v_n$;
- Soit A > 0 un réel fixé.

La suite (u_n) a pour limite $+\infty$ donc l'intervalle $]A; +\infty[$ contient tous les termes de la suite (u_n) à partir d'un rang n_1 ;

Si on considère $n_2 = max(n_0, n_1)$ alors pour tout entier $n, n \ge n_2$, l'intervalle A; $+\infty$ [contient tous les termes de la suite (v_n) donc la suite (v_n) a pour limite $+\infty$.

R.O.C. 2:

Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$

Démonstration:

Soit q > 1 alors q = 1 + a avec a > 0.

pour n entier naturel, soit $\mathcal{P}(n)$, la propriété

$$q^n \ge 1 + na$$

Initialisation: Pour n = 0, $q^0 = 1$ et 1 + 0.a = 1 donc $\mathcal{P}(0)$ est vraie.

 $\emph{H\'er\'edit\'e}: Supposons$ que la propriété $\mathcal{P}(n)$ est vraie pour un entier naturel n donné. Par hypothèse de récurrence :

$$q^n \ge 1 + na$$

donc

$$q^{n+1} \ge (1+na)(1+a)$$

puisque (1+a) = q > 0

$$q^{n+1} > 1 + na + a + na^2$$

 $et \ na^2 \geq 0 \ donc$

$$q^{n+1} \ge 1 + (n+1)a + na^2 \ge 1 + (n+1)a$$

La propriété $\mathcal{P}(n+1)$ est alors vraie.

Conclusion: D'après le principe de récurrence, $q^n \ge 1 + na$ pour tout entier n.

 $Or \lim_{n \to +\infty} 1 + na = +\infty \ pour \ a > 0 \ donc \ d'après \ le \ th\'eor\`eme \ de \ comparaison \lim_{n \to +\infty} q^n = +\infty.$

R.O.C. 3:

Si une suite (u_n) est croissante et non majorée alors $\lim_{n\to+\infty} u_n = +\infty$.

Démonstration:

Soit (u_n) une suite croissante et non majorée.

• (u_n) est non-majorée donc pour tout réel A > 0, il existe n_q tel que $u_{n_0} > A$;

• (u_n) est croissante donc pour tout entier $n \ge n_0$, $u_n > A$.

Ainsi, quelque soit A>0, il existe n_0 tel que pour tout entier $n\geq n_0$, $u_{n_0}>A$ ce qui revient à dire que

$$\lim_{n \to +\infty} u_n = +\infty$$

R.O.C. 4:

Si A et B sont deux événements indépendants alors \overline{A} et B sont deux événements indépendants.

Démonstration:

D'après la formule des probabilités totales, $P(B) = P(\overline{A} \cap B) + P(A \cap B)$ donc

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

Or A et B sont indépendants d'où

$$\begin{array}{lcl} P(\overline{A}\cap B) & = & P(B) - P(A)P(B) \\ P(\overline{A}\cap B) & = & (1-P(A))\times P(B) \\ P(\overline{A}\cap B) & = & P(\overline{A})\times P(B) \end{array}$$

On en déduit que \overline{A} et B sont deux événements indépendants.