Suites arithmétiques et géométriques

Exercice 1:

Soit q un nombre réel non-nul tel que -1 < q < 1. Démontrer que $\lim_{n \to +\infty} q^n = 0$

Exercice 2:

Soit (u_n) la suite arithmétique de raison 2 et de terme premier terme $u_0 = \frac{1}{3}$

- 1. Déterminer u_1 , u_2 et u_3 .
- 2. Déterminer l'expression de u_n en fonction de n.
- 3. Déterminer $\lim_{n \to +\infty} u_n$. Conclure
- 4. Déterminer $S_n = \sum_{k=0}^n u_k$ en fonction de n.
- 5. Déterminer $\lim_{n\to+\infty} S_n$. Conclure
- 6. Réaliser la même étude pour la suite géométrique (v_n) de raison $\frac{2}{3}$ et de terme premier terme $u_0 = 4$.

Exercice 3:

Calculer les sommes suivantes :

•
$$2+4+6+8+\cdots+1902$$

•
$$2+4+8+16+\cdots+4096$$

•
$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$

Exercice 4:

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{1 + u_n^2} \end{cases}$$

- 1. Déterminer u_1 , u_2 et u_3 .
- 2. Prouver que la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=u_n^2$ est arithmétique.
- 3. En déduire l'expression de u_n en fonction de n.
- 4. Déterminer $\lim_{n\to+\infty} u_n$. Conclure

Exercice 5:

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{4} \end{cases}$$

- 1. Déterminer u_1 , u_2 et u_3 .
- 2. Prouver que la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=u_n-\frac{1}{2}$ est géométrique.
- 3. En déduire l'expression de u_n en fonction de n et déterminer $\lim_{n\to+\infty}u_n$. Conclure
- 4. Déterminer S_n en fonction de n. En déduire $\lim_{n\to+\infty} S_n$ et conclure

Exercice 6:

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{4u_n}{4 - u_n} \end{cases}$$

1

- 1. Déterminer u_1 , u_2 et u_3 .
- 2. Prouver que la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=\frac{3u_n+2}{u_n}$ est arithmétique.
- 3. En déduire l'expression de u_n en fonction de n et déterminer $\lim_{n\to+\infty}u_n$. Conclure.