Convergence des suites monotones

Exercice 1:

Montrer que la suite (u_n) de terme général $u_n = \frac{4n-4}{n^2+3}$ est bornée.

Théorème: (admis)

- Si une suite est croissante et majorée alors elle converge.
- Si une suite est décroissante et minorée alors elle converge.

Exercice 2:

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{5u_n}{3u_n + 5}$.

- 1. À l'aide de la calculatrice, observer le comportement de cette suite.
- 2. Démontrer par récurrence que pour tout entier $n, u_n > 0$.
- 3. Démontrer que la suite est décroissante.
- 4. Conclure.

Exercice 3:

Démontrer le théorème ci-dessous :

Si une suite (u_n) est croissante et non majorée alors $\lim_{n\to+\infty}u_n=+\infty$.

Exercice 4:

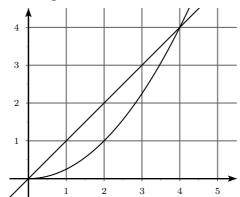
Démontrer le théorème ci-dessous :

Si une suite (u_n) est croissante et admet pour limite l alors pour tout entier naturel $n, u_n \leq l$.

Exercice 5:

Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 3$ et pour tout $n \ge 0$, $u_{n+1} = \frac{1}{4}u_n^2$.

1. On a tracé ci-dessous la courbe d'équation $y = \frac{1}{4}x^2$ et la droite d'équation y = x. Placer u_0, u_1, u_2 et u_3 .



- 2. Montrer, par récurrence, que pour tout $n \ge 0$, $0 \le u_n \le 3$
- 3. Étudier le sens de variations de la suite (u_n) .
- 4. (u_n) converge-t-elle?

Exercice 6:

La suite (u_n) est définie, pour tout entier naturel n, par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{8u_n + 3}{u_n + 6}$.

- 1. Construire le tableau de variations de la fonction $f: x \mapsto \frac{8x+3}{x+6}$ sur [1;3].
- 2. Démontrer par récurrence que $1 \le u_n \le 3$ pour $n \ge 1$.
- 3. Montrer que la suite (u_n) est croissante.
- 4. (u_n) converge-t-elle?