Forme exponentielle

1 Forme exponentielle

- 1. Soit z un nombre complexe de module 1 et d'argument θ .
 - a. Indiquer la position du point d'affixe z dans le plan complexe.
 - b. Déterminer l'écriture sous forme trigonométrique de z.
- 2. Soit f la fonction qui a tout réel θ associe le complexe $f(\theta) = \cos\theta + i\sin\theta$. Montrer que $f(\theta + \theta') = f(\theta) \times f(\theta')$ pour tout réels θ et θ' .
- 3. La fonction f transforme une somme en un produit, tout comme la fonction exponentielle. On définit ainsi une nouvelle écriture des nombres complexes de module 1:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

En déduire une nouvelle écriture de tous les nombres complexes.

On appellera cette écriture la forme exponentielle du nombre complexe.

4. Donner une écriture sous forme exponentielle des nombres complexes suivants :

$$z_1 = 4 - 4i$$
 $z_2 = -2i$ $z_3 = -2\sqrt{3} + 2i$ $z_4 = -3$ $z_5 = 6i$

5. Donner l'écriture sous forme algébrique des nombres complexes suivants :

$$z_6 = 3e^{i\frac{\pi}{2}}$$
 $z_7 = 4e^{-i\frac{\pi}{4}}$ $z_8 = \sqrt{3}e^{i\frac{2\pi}{3}}$ $z_9 = e^{-i\frac{5\pi}{6}}$ $z_{10} = \sqrt{2}e^{-i\pi}$

6. Placer les points M_i d'affixes z_i dans le plan complexe.

2 Conséquences

1. Soit $z=re^{i\theta}$ et $z'=r'e^{i\theta'}$ deux nombres complexes non-nul. Démontrer que :

$$\overline{z} = re^{-i\theta} \quad ; \quad zz' = rr'e^{i(\theta+\theta')} \quad ; \quad \frac{z}{z'} = \frac{r}{r'}e^{i(\theta-\theta')} \quad ; \quad z^n = r^ne^{in\theta}$$

- 2. Soit z et z' sont deux nombres complexes non-nuls. Démontrer que :
 - a. $|\overline{z}| = |z|$ et $arg(\overline{z}) \equiv -arg(z) \pmod{2\pi}$.
 - b. |zz'| = |z||z'| et $arg(zz') \equiv arg(z) + arg(z') \pmod{2\pi}$.
 - c. Si $z' \neq 0$; $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ et $arg(\frac{z}{z'}) \equiv arg(z) arg(z') \pmod{2\pi}$.
 - d. Pour tout entier naturel non-nul n; $|z^n| = |z|^n$ et $arg(z^n) \equiv n \ arg(z) \ (mod \ 2\pi)$.
 - e. Pour $z \neq 0$; $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ et $arg\left(\frac{1}{z} \right) \equiv -arg(z) \pmod{2\pi}$

3 Applications géométriques

Exercice 1:

Soit A, B, C et D quatre points d'affixes z_A , z_B , z_C et z_D tels que $z_A \neq z_B$ et $z_C \neq z_D$. Montrer que :

$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$

Exercice 2

Soit A, B, C et D quatre points d'affixes $z_A = -2$, $z_B = 2$, $z_C = -1 + i$ et $z_D = 1 - 3i$. Démontrer que les triangles BCD et ACD sont rectangles.