4,5 points

DEVOIR BILAN 1

Enseignants: LEDAUPHIN S.

Nom:

Note:

GREAU D.

Prénom:

 ${\bf Date}:\ 20/09/2013$

Classe:

Exercice 1:

Déterminer la limite des suites ci-dessous :

1. $(u_n)_{n\in\mathbb{N}}$ est la suite de terme général

$$u_n = \frac{-6n^2 + 3}{-7n - 4}$$

2. $(v_n)_{n\in\mathbb{N}}$ est une suite à termes positifs telle que pour tout entier n non-nul,

$$v_n \le \frac{2}{n^2}$$

3. $(w_n)_{n\in\mathbb{N}}$ est une suite telle que pour tout entier n,

$$-n\sqrt{n} \ge w_n$$

Exercice 2: 4,5 points

Étudier les variations des suites ci-dessous :

1. $(u_n)_{n\in\mathbb{N}}$ est la suite de terme général

$$u_n = -n^2 - 2n - 11$$

2. $(v_n)_{n\in\mathbb{N}}$ est définie par $v_0=5$ et pour tout entier n,

$$v_{n+1} = \frac{4}{3}v_n$$

3. $(w_n)_{n\in\mathbb{N}}$ est définie par $w_0=3$ et pour tout entier n,

$$w_{n+1} = w_n - 2n^2$$

Exercice 3: 3 points

Démontrer que pour tout entier $n \geq 3$,

$$3^n > 2^n + 5n$$

Exercice 4: 8 points

Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{3}u_n + 2 \end{cases}$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. On considère la suite (v_n) définie par $v_n = u_n 3$.
 - a. Montrer que pour tout entier $n, v_{n+1} = \frac{1}{3}v_n$
 - b. En déduire v_n en fonction de n puis u_n en fonction de n.
 - c. Déterminer la limite de la suite (u_n) .
- 3. Calculer $S_{10} = \sum_{i=0}^{10} v_i$