DEVOIR BILAN 4		
Enseignant : GREAU D.	Nom:	Note:
	Prénom :	
Date : 19/12/2013	Classe:	

Exercice 1: 8 points

Le plan complexe est muni d'un repère orthonormé direct $(0; \overrightarrow{u}, \overrightarrow{v})$. Soit A et B deux points d'affixes respectives $z_A = 2 - 2i$ et $z_B = 4e^{i\frac{5\pi}{6}}$. On placera les points au fur et à mesure de l'exercice.

- 1. Déterminer la forme exponentielle de l'affixe du point A.
- 2. Déterminer la forme algébrique de l'affixe du point B.
- 3. Déterminer l'affixe z_C du point C tel que $z_C = z_A \overline{z_B}$ sous forme exponentielle. (On ne placera pas C)
- 4. Déterminer l'affixe z_D du point D tel que $z_D = (z_A)^2$ sous forme exponentielle puis sous forme algébrique.
- 5. Déterminer l'affixe z_E du point E tel que $z_E = \frac{1}{z_B}$ sous forme exponentielle puis sous forme algébrique.
- 6. Déterminer l'ensemble \mathcal{E} des points M(z) tels que $|z-z_A|=|z-z_B|$ puis représenter \mathcal{E} .
- 7. Déterminer l'ensemble \mathcal{F} des points M(z) tels que $|z-z_A|=|z_A-z_B|$ puis représenter \mathcal{F} .

Exercice 2: 12 points

Soit g la fonction définie sur \mathbb{R} par

$$g(x) = x (e^x - e)$$

- 1. Étudier le signe de g sur \mathbb{R} .
- 2. Soit g' la fonction dérivée de la fonction g. Calculer g'(x) pour tout réel x sur \mathbb{R} .
- 3. Vérifier que la fonction dérivée seconde g'' est définie sur \mathbb{R} par $g''(x) = (2+x)e^x$.
- 4. En déduire les variations de la fonction g' sur \mathbb{R} .
- 5. Établir que l'équation g'(x) = 0 admet une solution unique α sur \mathbb{R} .
- 6. Déterminer une valeur approchée de α à 10^{-1} près.
- 7. En déduire les variations de la fonction g sur \mathbb{R} .
- 8. Démontrer que $e^{\alpha} = \frac{e}{1+\alpha}$
- 9. Déterminer la tangente à la courbe de la fonction g en 0 puis démontrer que cette tangente est située sous la courbe de la fonction g.