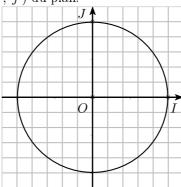
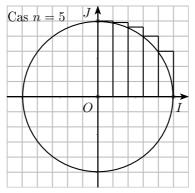
Approximation du nombre π

On se place dans un repère orthonormé $(O;\overrightarrow{i},\overrightarrow{j})$ du plan.



- 1. Déterminer l'aire du disque de centre l'origine et de rayon 1.
- 2. Déterminer l'équation du cercle de centre l'origine et de rayon 1.
- 3. En déduire l'expression de la fonction f associée au quart de cercle dont les points ont des coordonnées positives.
- 4. Déterminer l'aire entre la courbe de la fonction f et l'axe des abscisses sur [0;1].
- 5. On construit à présent la suite (S_n) définie de la façon suivante (pour $n \geq 2$) :
 - ullet On partage le segment [OI] en n segment de même longueur.
 - \bullet On dessine n rectangle comme dans la figure ci-dessous :



- S_n est la somme des aires des n rectangles ainsi construits.
- a. Déterminer S_2 et S_3 .
- b. Exprimer S_n en fonction de n.
- c. Conjecturer la limite de S_n lorsque n tend vers $+\infty$.
- 6. Compléter l'algorithme ci-dessous pour calculer S_n en fonction de n.

```
1: VARIABLES
2: n EST_DU_TYPE NOMBRE
3: s EST_DU_TYPE NOMBRE
4: i EST_DU_TYPE NOMBRE
5: DEBUT_ALGORITHME
      Lire
      s PREND LA VALEUR ...
8:
      POUR i ALLANT_DE 0 A ...
        DEBUT POUR
9:
10:
        s PREND_LA_VALEUR ...
        FIN POUR
11:
12:
      AFFICHER ...
13: FIN_ALGORITHME
```

- 7. Donner la valeur obtenue pour n = 5000.
- 8. Pour obtenir une approximation du nombre π , Archimède(III siècle avant J.C.) a utilisé deux polygones réguliers de 96 côtés : l'un inscrit dans le cercle, l'autre circonscrit au cercle, ce qui lui a permis d'obtenir l'encadrement :

$$3 + \frac{10}{71} < \pi < 3 + \frac{1}{7}$$

Comparer votre résultat avec la précision obtenue par Archimède.