Chapitre 13: Intégration I

1 Primitive

1.1 Définition

Définition:

Soit f une fonction définie sur un intervalle I. Une primitive de f sur I est une fonction F dérivable sur I et telle que pour tout x de I,

$$F'(x) = f(x)$$

Si elle existe, on note usuellement F la primitive d'une fonction f.

Exemple:

Lacinpi

Théorème:

f est une fonction qui admet une primitive F sur un intervalle I.

•

• .

• .

1.2 Primitives de fonctions usuelles

Propriété:

Dans le tableau ci-dessous figure la primitive la plus usuelle c'est à dire sans constante.

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	$sur\ I=\dots$
x^n où $n \in \mathbb{Z} \setminus \{-1\}$		$\int \mathbb{R} \qquad pour n \geq 0$
$\frac{1}{\sqrt{x}}$		$]0;+\infty[$
$\cos x$		\mathbb{R}
$\sin x$		\mathbb{R}

1.3 Primitives et opérations sur les fonctions

Propriété:

- F et G sont des primitives respectives des fonctions f et g sur I alors F+G est une primitive de f+g sur I.
- F est une primitive de la fonction f sur I et k est un nombre réel alors $k \cdot F$ est une primitive de $k \cdot f$ sur I.

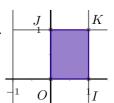
Propriété:

 $Dans\ le\ tableau\ ci-dessous\ u\ d\'esigne\ une\ fonction\ d\'erivable\ sur\ I.$

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	Conditions
$\frac{u'}{u^2}$		$u(x) \neq 0$ pour tout x de I
$u' \cdot u^n \ où \ n \in \mathbb{Z} \setminus \{-1\}$		$pour \ n \leq -2, \ u(x) \neq 0 \ pour \ tout \ x \ de \ I$
$\frac{u'}{\sqrt{u}}$		u(x) > 0 pour tout x de I

Notion d'intégrale 2

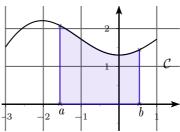
Dans un repère orthogonal $(O; \overrightarrow{OI}, \overrightarrow{OJ})$, l'unité d'aire (U.A) est l'aire du rectangle OIKJ. Dans la suite:



- toutes les courbes sont représentées dans un repère orthogonal;
- toutes les aires sont données dans l'unité d'aire associée au repère.

Définition:

Soit f une fonction continue et positive sur un intervalle [a;b] et C sa courbe représentative.



 $\int_{a}^{b} f(x) dx \text{ se lit } \text{``intégrale de a `a` b' de } f(x) dx \text{'`}.$

Remarque: La variable x n'a pas d'importance, on a $\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(q) dq$.

Propriété:

Soit f une fonction continue et positive sur un intervalle [a; b] alors