Primitives

Définition:

Soit f une fonction définie sur un intervalle I. Une primitive de f sur I est une fonction F dérivable sur I et telle que pour tout x de I,

$$F'(x) = f(x)$$

Si elle existe, on note usuellement F la primitive d'une fonction f.

Exercice 1:

Déterminer le domaine de définition puis une primitive des fonctions ci-dessous :

a.
$$f(x) = 5x^2 - 4x + 1$$

b.
$$g(x) = 2 - \frac{1}{x^2}$$

c.
$$m(x) = 7x^2 + \frac{7}{x^2}$$

Exercice 2:

Soit f une fonction qui admet une primitive F sur un intervalle I. Démontrer que :

- 1. La fonction G définie sur I par G(x) = F(x) + c, où c est un réel est aussi une primitive de f sur I.
- 2. Toute primitive de f sur I est de la forme F + c.
- 3. $x_0 \in I$ et c un nombre réel. Il existe une unique primitive F de f sur I tel que $F(x_0) = c$.

Exercice 3:

Compléter le tableau ci-dessous :

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	$sur I = \dots$
x^n où $n \in \mathbb{N}$		
$\frac{1}{x^n} \text{ où } n \in \mathbb{N} \backslash \left\{0; 1\right\}$		
$\frac{1}{\sqrt{x}}$		
$\cos x$		
$\sin x$		

Exercice 4:

Compléter le tableau ci-dessous où u désigne une fonction dérivable sur I.

Fonction définie par $f(x) = \dots$	Une primitive de f est définie par $F(x) = \dots$	Conditions
$\frac{u'}{u^2}$		
$u' \cdot u^n$ où $n \in \mathbb{N}$		
$\frac{u'}{u^n} \text{ où } n \in \mathbb{N} \backslash \left\{0; 1\right\}$		
$\frac{u'}{\sqrt{u}}$		

1

Exercice 5:

Déterminer le domaine de définition puis une primitive des fonctions ci-dessous :

a.
$$f(x) = \frac{6x-3}{(3x^2-3x+1)^2}$$
 b. $g(x) = 2x(x^2-1)^2$ c. $h(x) = \frac{x}{(1+x^2)^3} - 2$ d. $k(x) = \frac{7+14x}{\sqrt{1+x+x^2}}$

b.
$$g(x) = 2x(x^2 - 1)^2$$

c.
$$h(x) = \frac{x}{(1+x^2)^3} - 2$$

d.
$$k(x) = \frac{7 + 14x}{\sqrt{1 + x + x^2}}$$