Théorèmes de comparaisons

Exercice 1:

Démontrer le théorème ci-dessous :

Soit f, u et v trois fonctions définies sur $[M\,;\,+\infty[$. Si $u(x)\leqslant f(x)\leqslant v(x)$ et si $\lim_{x\to+\infty}u(x)=\lim_{x\to+\infty}v(x)=l$ alors $\lim_{x\to+\infty}f(x)=l$

Exercice 2:

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{x + 4\cos(x)}{x}$

1. Montrer que pour tout réel x > 0,

$$1 - \frac{4}{x} \le f(x) \le 1 + \frac{4}{x}$$

2. En déduire $\lim_{x\to+\infty} f(x)$.

3. Déterminer $\lim_{x \to -\infty} f(x)$.

Exercice 3:

Démontrer le théorème ci-dessous :

Soit f et g deux fonctions définies sur $I=[M\,;\,+\infty[$. Si pour tout $x\in I,\, f(x)\leqslant g(x)$ et $\lim_{x\to+\infty}f(x)=+\infty$ alors $\lim_{x\to+\infty}g(x)=+\infty$.

Exercice 4:

Soit f la fonction définie sur \mathbb{R} par f(x) = x - 3sin(x).

1. Montrer que pour tout réel $x, f(x) \ge x - 3$.

2. En déduire $\lim_{x \to +\infty} f(x)$.

3. Déterminer $\lim_{x \to -\infty} f(x)$.

Exercice 5:

Soit f une fonction définie sur \mathbb{R} tel que pour tout réel x,

$$\frac{4x^2}{1+x^2} \le f(x) \le 4 + \frac{1}{\sqrt{1+x^2}}$$

Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$