DEVOIR BILAN 3						
Enseignant : GREAU D.	Nom:	Note:				
	Prénom :					
Date : 26/11/2015	Classe :	Durée : 2 heures				

Exercice 1: 1 points

Soit (u_n) une suite croissante tel que pour tout entier $n, u_n < 2$. Que peut-on en déduire pour la suite (u_n) ?

Exercice 2: 6 points

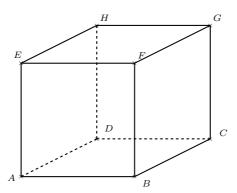
L'objectif de cet exercice est de résoudre l'équation ci-dessous :

$$\frac{x^3 - 3x^2 - 2x - 1}{x - 1} = 3x$$

- 1. A l'aide d'un argument graphique que vous donnerez, conjecturer le nombre de solutions de cette équation.
- 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 6x^2 + x 1$
 - a. Déterminer les variations de f.
 - b. En déduire que f(x) = 0 admet une unique solution α sur \mathbb{R} .
 - c. Donner un encadrement de α à 10^{-3} près.
- 3. Pour $x \neq 1$, montrer que $\frac{x^3 3x^2 2x 1}{x 1} = 3x \Longleftrightarrow f(x) = 0$.
- 4. En déduire la solution de l'équation initiale.

Exercice 3: 4 points

ABCDEFGH est un cube et l'espace est rapporté au repère $\left(D;\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DH}\right)$



- 1. Soit I le milieu de [AB] et J celui de [EH]. Déterminer les réels a et b tels que $\overrightarrow{IJ} = a\overrightarrow{AE} + b\overrightarrow{HB}$.
- 2. Que peut-on en déduire pour les vecteurs \overrightarrow{AE} , \overrightarrow{HB} et \overrightarrow{IJ} .
- 3. Tracer l'intersection du cube ABCDEFGH et du plan (IJC). Justifier votre construction.

On pourra utiliser la propriété suivante : un plan coupe deux plans parallèles selon deux droites parallèles.

4. En déduire l'intersection du plan (DCG) et de la droite (IJ).

1. On considère l'algorithme suivant :

Variables:	k et p sont des entiers naturels			
	u est un réel			
Entrée :	Demander la valeur de p			
Traitement:	Affecter à k la valeur 0			
	Affecter à u la valeur 5			
	Tant que $k < p$			
	Affecter à u la valeur $0, 5(u+k-3)$			
	Affecter à k la valeur $k+1$			
	Fin de Tant que			
Sortie:	Afficher u			

Faire fonctionner cet algorithme pour p=3 en indiquant les valeurs des variables à chaque étape.

2. Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par

$$u_{n+1} = \frac{1}{2} (u_n + n - 3).$$

- a. Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 0 à p.
- b. A l'aide de l'algorithme modifié, après avoir saisi p=4, on obtient les résultats suivants :

n	0	1	2	3	4
u_n	5	1	-0, 5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante? Justifier.

- c. Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$.
- d. Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- e. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = \frac{1}{10}u_n \frac{1}{10}n + \frac{1}{2}$.
 - i. Démontrer que la suite (v_n) est géométrique de raison $\frac{1}{2}$.
 - ii. Exprimer alors v_n en fonction de n.
- f. En déduire que, pour tout entier naturel n,

$$u_n = 10\left(\frac{1}{2}\right)^n + n - 5.$$

g. Déterminer alors la limite de la suite (u_n) .

Exercice 5: 2 points

Soient A et B deux évènements associés à une expérience aléatoire. On rappelle que :

- $P(B) = P(B \cap A) + P(B \cap \overline{A})$
- A et B sont indépendants si et seulement si : $P(A \cap B) = P(A) \times P(B)$.

Démontrer que, si les évènements A et B sont indépendants alors les évènements \overline{A} et B le sont également.