Localiser une solution de f(x)=0

Théorème:

Soit f une fonction continue et strictement monotone sur un intervalle [a;b] tel que f(a) et f(b) sont de signes contraires. L'équation f(x) = 0 admet alors une unique solution α dans l'intervalle [a;b].

- 1. Démontrer le théorème ci-dessus.
- 2. Démontrer l'équation $x^3 3x^2 + 4x 1 = 0$ admet une unique solution α sur [-10; 10].
- 3. Encadrer α entre deux entiers consécutifs.

Le théorème ci-dessus donne l'existence d'un réel α dans l'intervalle [a;b] tel que $f(\alpha)=0$ mais ne nous donne pas le moyen de trouver α ou une valeur approchée de α .

4. Expliquer le fonctionnement de l'algorithme ci-dessous :

 $\begin{tabular}{ll} \hline \textbf{Variables}: \\ a, p \\ Algorithme: \\ \hline \textbf{Saisir } a \\ \textbf{Saisir } p \\ \hline \textbf{Tant que } f(a) \times f(a+p) > 0 \text{ faire } \\ a \text{ reçoit } a+p \\ \hline \textbf{FinTant} \\ \textbf{Afficher } a \\ \textbf{Afficher } a+p \\ \hline \end{tabular}$

- 5. Programmer l'algorithme ci-dessous à l'aide du logiciel Algobox.
- 6. Trouver un encadrement d'amplitude 10^{-4} de α à l'aide de cette algorithme