Méthode d'Euler

Introduction à la méthode d'Euler

La méthode d'Euler permet de construire la courbe d'une solution approchée à l'équation :

$$f'(x) = g(x)$$

Autrement dit, lors qu'on connait la dérivée d'une fonction f, on peut grâce à la méthode d'Euler ¹ tracer une courbe approchée de celle de f.

Principe de la méthode

f est une fonction dérivable sur un intervalle [a;b] dont on connait uniquement la fonction dérivée f' et la valeur y_0 en un point x_0 de [a;b]. On dit que $f(x_0) = y_0$ est la condition initiale. Le point $A_0(x_0;y_0)$ est sur la courbe.

Pour obtenir un nouveau point, on utilise la propriété ci-dessous :

Soit f une fonction définie sur un intervalle I et a un réel de I. Si f est dérivable en a. Pour tout réel h tel que $a+h\in I$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \dots \longrightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} - f'(a) = \dots$$

donc on peut définir une fonction $\varepsilon: h \longmapsto \varepsilon(h)$ tel que :

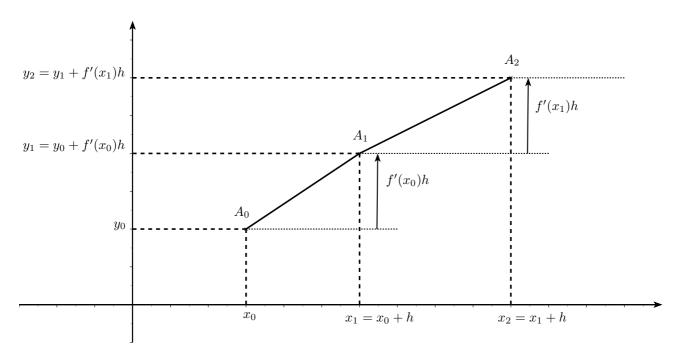
$$\varepsilon(h) = \frac{f(a+h) - f(a)}{h} - f'(a)$$
 avec $\lim_{h \to 0} \varepsilon(h) = \dots$

Ainsi,

$$f(a+h)-f(a)=\ldots$$
 soit $f(a+h)=\ldots$ avec $\lim_{h\to 0}\varepsilon(h)=0$

L'idée de la méthode d'Euler est de choisir un réel h strictement positif puis de remplacer $f(x_0 + h)$ par $f(x_0) + f'(x_0)h$. On commet alors une erreur de $h\varepsilon(h)$ qu'on peut rendre aussi petite que l'on veut en choisissant une valeur de h assez petite.

On obtient alors un nouveau point $A_1(x_1; y_1)$ où $x_1 = x_0 + h$ et $y_1 = f(x_0) + f'(x_0)h = y_0 + f'(x_0)h$.



On réitère le processus pour obtenir le point $A_2(x_2; y_2)$ où $x_2 = x_1 + h$ et $y_2 = y_1 + f'(x_1)h$ et donc tous les points $A_n(x_n; y_n)$ où $x_{n+1} = x_n + h$ et $y_{n+1} = y_n + f'(x_n)h$ pour tout $n \in \mathbb{N}$.

On remarque que les erreurs se cumulent. En effet, à chaque étape on approxime $f(x_{n+1})$ par $y_n + f'(x_n)h$ et pas par $f(x_n) + f'(x_n)h$

Application 1

On a montré précédemment que la fonction exponentielle est l'unique fonction telle que :

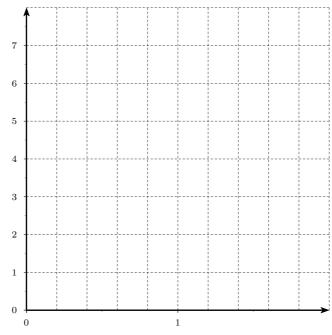
$$\begin{cases} f' = f \\ f(0) = 1 \end{cases}$$

On va tracer des courbes approchées de la courbe de la fonction exponentielle à l'aide de la méthode d'Euler.

- 1. Montrer que la méthode d'Euler conduit à choisir $y_{n+1} = (1+h)y_n$.
- 2. On va tracer une approximation la courbe de la fonction exponentielle sur [0; 2]. Pour cela, compléter le tableau ci-dessous avec h = 0, 2:

	x_n	0	0, 2	0, 4	0, 6	0,8	1	1, 2	1, 4	1,6	1,8	2
Γ	y_n											

3. Tracer dans le repère ci-dessous la courbe de la fonction exponentielle et son approximation obtenue par la méthode d'Euler avec h = 0, 2.



- 4. Dans un même repère, tracer à l'aide d'un tableur les courbes qui correspondent pour la méthode d'Euler à des pas de 0,1; 0,05 et 0,01 pour $x \in [0;3]$.
- 5. Dans chaque cas, donner une valeur approchée de exp(1). Comparer avec la valeur de exp(1) donnée par votre calculatrice.
- 6. Tracer à l'aide d'un tableur la courbe qui correspond pour la méthode d'Euler à un pas de 0, 1 pour $x \in [-3, 3]$.

Application 2

f une fonction dérivable sur \mathbb{R} telle que $f'(x) = \frac{1}{1+x^2}$ et f(0) = 0.

- 1. Montrer que la méthode d'Euler conduit à choisir $y_{n+1} = y_n + \frac{h}{1 + x_n^2}$
- 2. Dans un même repère, tracer à l'aide d'un tableur les courbes qui correspondent pour la méthode d'Euler à des pas de 0,1; 0,05 et 0,01 pour $x \in [0;10]$.

Application 3

f une fonction dérivable sur \mathbb{R} telle que f'(x) = 2x + 3 et f(0) = 1.

- 1. Montrer que la méthode d'Euler conduit à choisir $y_{n+1} = y_n + (2x_n + 3)h$.
- 2. Dans un même repère, tracer à l'aide d'un tableur les courbes qui correspondent pour la méthode d'Euler à des pas de 0,1; 0,05 et 0,01 pour $x \in [0;10]$.
- 3. Déterminer la fonction f.
- 4. En déduire l'erreur commise à chaque étape en fonction de h.