Exercices type bac

Exercice 1:

Partie 1 : Restitution organisée des connaissances

On rappelle que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$. Démontrer que $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$.

Partie 2 : Étude de fonction

On considère la fonction f définie sur $[1; +\infty[$ par $f(x) = x - \frac{\ln(x)}{x}]$

On note \mathcal{C} sa courbe représentative dans un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1. Soit g la fonction définie sur $[1; +\infty[$ par $g(x) = x^2 1 + \ln(x)$. Montrer que la fonction g est positive sur $[1; +\infty[$.
- 2. a. Montrer que, pour tout x de $[1; +\infty[$, $f'(x) = \frac{g(x)}{x^2}]$.
 - b. En déduire le sens de variation de f sur $[1; +\infty[$.
 - c. Montrer que la droite \mathcal{D} d'équation y=x est une asymptote à la courbe \mathcal{C} .
 - d. Étudier la position de la courbe \mathcal{C} par rapport à la droite \mathcal{D} .
- 3. Pour tout entier naturel k supérieur ou égal à 2, on note respectivement M_k et N_k les points d'abscisse k de \mathcal{C} et \mathcal{D} .
 - a. Montrer que, pour tout entier naturel k supérieur ou égal à 2, la distance $M_k N_k$ entre les points M_k et N_k est donnée par $M_k N_k = \frac{\ln(k)}{k}$.
 - b. Écrire un algorithme déterminant le plus petit entier k_0 supérieur ou égal à 2 tel que la distance $M_k N_k$ soit inférieure ou égale à 10^{-2} .

Exercice 2:

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = x + \ln x.$$

On nomme Γ sa courbe représentative dans un repère orthogonal $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan.

- 1. a. Déterminer les limites de la fonction f aux bornes de son intervalle de définition.
 - b. Montrer que la fonction f est strictement croissante sur l'intervalle $]0\ ;\ +\infty[.$
- 2. a. Montrer que, pour tout entier naturel n, l'équation f(x) = n admet une unique solution dans]0; $+\infty[$. On note α_n cette solution. On a donc pour tout entier naturel n, $\alpha_n + \ln \alpha_n = n$.
 - b. Sur la page annexe, on a tracé Γ dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$. Placer les nombres α_0 , α_1 , α_2 , α_3 , α_4 et α_5 sur l'axe des abscisses en laissant apparents les traits de construction.
 - c. Préciser la valeur de α_1 .
 - d. Démontrer que la suite (α_n) est strictement croissante.
- 3. a. Déterminer une équation de la tangente Δ à la courbe Γ au point A d'abscisse 1.
 - b. Étudier les variations de la fonction h définie sur]0; $+\infty[$ par

$$h(x) = \ln x - x + 1.$$

En déduire la position de la courbe Γ par rapport à Δ .

- c. Tracer Δ sur le graphique de la page annexe. Démontrer que, pour tout entier naturel n non nul, $\frac{n+1}{2} \leqslant \alpha_n$.
- 4. Déterminer la limite de la suite (α_n) .

Annexe

